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The complete equations of motion of a flexible supersonic high L/D body are
presented. The bending is represented by cutting the projectile into two parts,
both of which behave like rigid bodies. A Lagrangian approach is used which
leadsto alinear set of equations, which are numerically solved, in order to ana-
lyze the system stability. A parametric study is then presented, to evaluate the
influence of chosen parameters (initial conditions, body rigidity, steady state
roll rate) on this stability. These numerical results are then compared with small
scale firing tests results, thus leading to a qualitative validation of the model
and its mathematical formulation.

INTRODUCTION

The in-flight behavior of high L/D ratio projectiles may present detrimental aeroelas-
tic effects, because of the destabilizing feature of the flow-oscillating mechanical struc-
ture coupling. The problem specificity, relative to normal practice in the aeronautic field,
isthe result of the very high constraints and accel erations the body undergoes during the
launch, the particular geometric configuration of the latter and the very high speeds consi-
dered, as well as the roll movement. This study is aimed at highlighting the influence of
aeroelasticity on firing accuracy and dispersion. It includes the construction of a numeri-
cal model with an adequate formulation of the motion equations and firing tests for vali-
dation purposes. It is carried out in association with the | SL (French-German Research In-
stitute) and with the University of Orleans.
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NUMERICAL APPROACH

Model Presentation [1]

The bending is represented by “cutting” the body into two parts (see Fig. 1), connec-
ted by what we'll call an “elastic ball joint”. Thistype of joint allows the same degrees of
freedom as aball joint (three rotational degrees) but is able to transmit torques. We then
have abody in two parts, both of which behave like rigid bodies and are connected at one
point, named A.

Figure 1: Mechanical model.

Therear part has three degrees of freedom relative to the fore part (two degrees of fle-
xion in the pitch and yaw directions and one degree of torsion in the longitudina direc-
tion). We thus have a nine degree of freedom system: three translational degrees for the
connecting point and three rotational degreesfor each body.

Thissimplified model was chosen, as afirst approximation, for many reasons:

— thefirst reason stems from a bibliographic study and is the result according to which
only thefirst bending mode has a significant influence on the body stability [2],

— thisrepresentation enables a partition of the aerodynamic load,

— the problem can be treated by rigid-body dynamics, as each body behaves mechani-
caly likearigid body. If necessary, it isthen possibleto write the equations of motion,
whiletaking large displacementsinto account (non linear equations),

— lastly, this first approach alows an extension towards the study of a continuous sys-
tem. Actualy, itispossiblefor three, four, ... n bodiesto be considered later on.

Equations of Motion
A Lagrangian approach was used in order to write the equations of motion of the mo-
del. The nine Lagrangian equations were firstly written and linearized. The aerodynamic

load was determined and linearized in terms of the generalized coordinates. The system
could then bewritten inamatrix form.
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Lagrange'sequations are given by:
d

dt

aT | _aT _
aq; | 0q;
where ¢ represent the independent generalized coordinates, is the kinetic energy of the
wholebody and I; arethe generalized forces(j = 1t0 9).

We have nineindependent generalized coordinates that correspond to the nine degrees
of freedom (DOF). We then have six angles, corresponding to the three rotational DOF of
each of the two bodies, and the three coordinates of point A. The equationsarewrittenina
particular coordinate frame, that enables linearization, that is to say a coordinate frame
where generalized coordinates are small quantities. This coordinate frame actually repre-
sentsthe “ideal” position and trajectory of the body. It has a translatory movement (rela
tive to the earth) at speed u, where u is the velocity of the body and a rotational move-
ment, representing the roll movement. The generalized coordinates are expressed in that
coordinate frame and then represent the small displacements of the body relative to its
“ideal” configuration.

The calculation of the genaralized forces implies the aerodynamic load evaluation. In
order to determine the aerodynamic forces applied to the two bodies, we make a station-
ary assumption: theload is evaluated for different flexed configurations of the body, with-
out taking the flexing oscillations into account. This can be justified by comparing the
characteristic time of the flow with the characteristic time of flexing (ratio about 15). The
aerodynamic forces and moments are calculated, firstly using the SHABP code [3]
(Supersonic Hypersonic Arbitrary Body Program). Later, CFD calculations using
FLU3M code[4] (Euler and Navier Stokes equations) will be considered.

The SHABP code does not cal culate the Magnus force, nor the Magnus moment coef-
ficients. Neither does it provide the damping moment coefficients (roll, pitch, yaw).
These coefficients are, asafirst approximation, considered constant and equal to therigid
body values (obtained from wind tunnel tests[5]).

Aerodynamics coefficients are found, that are either constants, or linear in terms of
generalized coordinates. We then obtain alinear set of equations, which can be written as
follows:

m; @

[M]{X] + (61 +1Ch) [X] +1K*]

NEI 2

where [M] is amass matrix, [G] is a gyroscopic matrix, [C] is a damping matrix and
[K*] isastiffness matrix modified by centrifugal and aerodynamic forces.

Numerical Resolution

With no roll and no aerodynamic load, the system of equations has 4 zero natural fre-
guencies, that correspond to rigid body modes and a doubl e frequency that correspondsto
the first static bending frequency. With anon zero roll rate and an aerodynamic load, the
frequencies become complex quantities and we will focus our attention on the real part,
which indicates the stability of the projectile. Indeed, when the real part of one of the fre-
guencies becomes positive, it corresponds to an exponential amplification of perturba
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tions. The advantage of the natural frequencies study isthat it enables rapid prediction of
key parameters (roll rate, rigidity, ...). The drawback is that the velocity of the projectile
and its roll rate are considered constant and gravity can’t be taken into account. That's
why animplicit resolution of the motion equations has also been carried out.

The aim of the resolution program isto know, at any instant of the flight, the position
and orientation of the body, that isto say the coordinates of point A (see Fig. 1), the angle
of attack and the flexure angle of the body. A Newmark [6] method (corresponding to an
implicit formulation) is used. This method is a one-step time dependent integration me-
thod. The system state at a given time tp+1 = tp + h is evaluated from the known state at
timety, thanksto Taylor’sformula. The results obtained are then compared with those ob-
tained with a rigid body 6-Degrees-Of-Freedom code. We then impose a high rigidity
(10000 times bigger than the real value) in our formulation to be under the same condi-
tions. Thisenabled program validation in therigid body case.

Thefirst result is that bending may be created by aerodynamics, even when no initial
flexureisinduced during the launch. Yet thisbending is of low intensity.

When assuming an initial flexure of the body, the phenomenon is rapidly damped if
the initial angles of attack of the fore and rear parts of the body are of different signs. If
this is not the case, the natural frequencies excited are not the same and the damping is
much lower.

The most influential parameter seems to be the steady state roll rate, as it has an in-
fluence on the frequencies excited, but also on the aerodynamic load. Increasing its value
leads to an amplification of the destabilizing patterns (bending angle and angle of attack
for example). We can then highlight a critical roll rate, above which we have instability.
Yet, thiscritical roll rate also exists for therigid body and islinked to the Magnus effects.
But what we can note isthat its value depends on the projectile flexibility. The morerigid
the projectile, the higher the critical roll rate

To obtain validation of these first numerical results, experiments have been carried
out.

EXPERIMENTAL APPROACH

Experimental Device

A whole series of small scale firing tests have been carried out in the 100 meter free
flight ballistics corridor at 1SL, using a 30 mm gun. Smooth projectiles, with an L/D ratio
of up to 70 (to enhance the bending phenomenon) have been fired at Mach 3. Projectiles,
with a three-component sabot, are pushed during the launch. Many of these firings were
aimed at determining the conditions (body geometry, launch) under which the bending
phenomenon was significant but not so much so that it strongly modified the trajectory. It
wasthen possibleto vary different parameters such astheroll rate for instance.

Aeroelastic free flight behaviour of the projectile is investigated by use of amultiple
orthogonal shadow visualisation technique (8 double shadowgraphic stations, in the verti-
cal and horizontal planes) and of the yaw card technique. The speed of the projectileis
measured by use of aDoppler radar.
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Exploitation and First Comparative Results

For each shadowgraph, points along the curved cylindrical part of the projectilearere-
corded (plus two points characterizing the firing axis). We thus have the spatial coordina
tesof the bent rod at our disposal and thisisvery richininformation.

First, it enables the plane in which the bending occursto be determined. Indeed, it was
verified, on all photographs of many firings, that bending is planar, that isto say thereis
notorsion. It isthen possible for the new coordinates of the points a ong the bent rod to be
written in the bending plane, so asto obtain the real bending aspect. We can then verify if
this aspect is close to the first bending mode or not, which would justify the chosen mo-
del. Fig. 2 presents the results obtained for 3 successive shadowgraphs of a particular fi-
ring (chosen because the bending amplitude was one of the largest obtained). Squaresre-
present values measured from shadowgraphs, whereas the continuous line represents the
analytical first bending mode aspect of an equivalent free-free beam with acircular cross
section.

For al analyzed photographs, the bending aspect was close to the first mode, especi-
aly when the bending amplitude is high. For a slightly bent rod, thisis less true, maybe
becausein that case, the measurement rel ative error becomes more important.

In fact, the shadowgraphs give us the position, orientation and bending of the projec-
tile at 8 successive times (about one millisecond between two shadowgraphs). It is suffi-
cient to obtain at least two periods of bending oscillations, but there are few pointsin one
period, which makes it difficult to interpolate from them (see Fig. 3, which represents the
bending angle versus distance from the gun muzzle).
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Figure 2: Comparisons experimental / analytical first mode bending aspect.
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Figure 3: Experimental bending angle.

We then analyse yaw cards. For arigid body, yaw card study can provide the follow-
ing quantities: the roll angle ¢, the precession Y (orientation of the resistance plane re-
spect to the vertical plane containing the velocity vector), the angle of attack d. In our
case, the imprint in the yaw card is the result of combined orientation and bending of the
body. We thus defined effective quantities ¢ s, Wesf, Ocff, COrresponding to the equivalent
imprint of arigid body.

First, we compared yaw card results with shadowgraph results. Fig. 6 represents degt
versus distance from the gun muzzle. Square symbols are obtained from yaw cards and
circle symbols from shadowgraphs.
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Figure 4. Correlation between yaw cards/ shadowgraphs results.

Comparison is satisfactory and we can note that the curves seem perturbed, as compa-
red with curves obtained with arigid body. In the same way, Fig. 5 showsthe same sort of
perturbations on the Angle of attack/Precession (delta/psi) polar diagram. The theoretical
rigid body curveis represented by the dotted line, experimental values by the crosses and
the theoretical flexible body curve by the continuous line (for an initial 2 degree bending
angle).

Thisisnot due to measurement inaccuracy, but to the body bending. This qualitatively
substantiates the numerical results, which enhance the influence of bending on the trgjec-
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tory parameters. Fig 6 and 7 show that a higher frequency superimposes the main fre-
guency and correspondsto the bending frequency.
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Figure 5: Comparison numerical / experimental polar diagram.

CONCLUSION AND PERSPECTIVES

A completelinear set of equations, describing the motion and bending of a supersonic
high L/D body was written, using a Lagrangian formulation. A study of the first natural
frequencies and a program of resolution of these equations was then carried out, leading
to an evaluation of the influence of key parameters on the projectile’s dynamic behavior.
The parameter that influences stability most seems to be the roll rate, which has an in-
fluence on the natural frequencies excited and also on the aerodynamic load.

Firingstest have been carried out and provided purely experimental results. For exam-
ple, for al firings considered, bending was planar and the bending aspect was close to the
first mode aspect. Moreover, these experiments have also qualitatively substantiated nu-
merical results.

Many ways are considered to improve this study. The first one is a resolution of the
complete coupled system (no linearization). It is also possible to consider more than two
rigid partsfor bending representation. Lastly, the aerodynamic |oad evaluation can beim-
proved, by use of CFD calculations.
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