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AERODYNAMIC ASPECTS OF A GRID FINNED PROJECTILE
AT SUBSONIC AND SUPERSONIC VELOCITIES
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Wind tunnel tests were conducted on a grid finned projectile configuration in
the Mach number range of 0.6 to 3.0. The four fins consisted of nine cellsin a
vertical orientation. They werelocated 0.7 cal ahead of the base of an ogive-cy-
linder body with alength to diameter ratio of 10.0. Flow visuaizations as well
as force and moment measurements were conducted. The axial and normal for-
ces, the static and roll moments were obtained for angles of fin cant of 0.0°,
5.0°, 10.0° and 15.0°. Free-flight drag datais al so presented.

INTRODUCTION

The use of grid finsas a stabilization and control device on projectiles and missiles of -
fers an interesting alternative to the classical fin design. Their easy storage for deploy-
ment, low hinge moments and high angle of attack performance are their main advantages
whiletheir main shortcoming isahigher drag penalty.

A joint project was undertaken between France and Canada to increase the knowledge
base of projectiles and missiles equipped with grid fins. The objectives of thiswork were
to study the fundamental aerodynamics phenomena associated to this type of control sur-
faces and to compare these results with other types of conventional control such aslateral
and/or impulse jets and classical planar lifting surfaces. Furthermore, the database gene-
rated during this investigation will be used to point out the advantages and disadvantages
of such a concept compared to other ones. They also will constitute test cases to validate
numerical prediction codes.

Results contained in this paper were produced from two test series conducted on mo-
delsat the I SL supersonic wind tunnel and the DREV trisonic wind tunnel and some drag
data obtained from free-flight tests conducted at DREV.
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MODEL CONFIGURATION

The reference configuration was the Air Force Finner [1] body equipped with four
grid fins, as shown in Fig. 1a. The body consisted of a2.5 caliber tangent-ogive followed
by a7.5 caliber cylinder. Thefinswere placed at 0.7 calibers from the base. The total span
is2.4 caliberswith achord of 0.08 calibers.

The grid fin, presented in Fig. 1b, has nine cells with thick walls. Thick walls were
chosen to alow wind tunnel static wall pressure measurements on the central cell. Thisgrid
fin geometry, contrary to many other papers [2-4], hasavertical cell orientation instead of
a cruciform one. This was done to simplify the geometry to be able to understand basic
aerodynamic phenomena of simple cells. Each cell is rectangular with a width of 0.124
caliber and a height of 0.161 caliber. In order to avoid possible structure deficiencies
during free-flight tests, a solid base was designed to mount the fins on the body. The first
model, defined as the reference configuration, had zero fin deflection angle on all four
devices. Three other configurations had all four fins canted at 5, 10 and 15 degrees,
respectively, to produce apureroll motion.

EXPERIMENTAL PROCEDURE

Experimental facilities

Thewind tunnel experimentswere conducted in the DREV trisonic 60 cm x 60 cm wind
tunnel [5] and the French-German Research Institute of Saint-Louis (I1SL) blow down faci-
lity with atest section of 20 cmx 20 cm. Thefacilitiesarefurther describedin[7].

Test Procedures and Techniques

Thewind tunnel modelstested at DREV and | SL were supplied by ISL and they had a
diameter of 20 mm. The 12.7-mm Able balance was utilized for these experiments. The
aerodynamic coefficients were obtained by best fit polynomials through the measured ex-
perimental data.

The DREV wind tunnel aerodynamic results (CAO, CN, Cm, CI, Xcp) were obtained
from acombination of model sweeps between —5° and +15° incidence at roll orientations
of 0° and +45°. The tests were conducted at supersonic Mach numbers of 1.5, 2.0, 2.5 and
3.0 and at anominal subsonic Mach number of 0.6. The slopes of the normal force and the
pitching moment coefficients were obtained from the best-fit line through the experimen-
tal data between —5° and +5°. The axial force at zero angle of attack, CAO, is uncorrected
for base effects, i.e. it isthe value as measured by the balance. The roll moment dueto fin
cant (Cld) provided, isthe one measured at zero angle of attack.

ISL results include shadowgraph flow visuaizations, force and moment measure-
ments at a nominal Mach number of 3.0. Flow visualizations were conducted for 3 fin
configurations (one shown in this paper, 6 = 0.0) at angles of attack ranging between zero
and 12° at zero and 45° roll orientation. Forces and moments were obtained using the
sametest procedures asfor the DREV wind tunnel.
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FREE-FLIGHT TESTS

Two series of free-flight tests were conducted to assess the launch of the models from
a110-mm smooth bore gun before testing in the DREV aeroballistic range. The main goal
of thesetestsisto verify the sabot-model integrity at launch and to make sure that the mo-
del isstable over adistance of 250 m, the length of the aeroballistic range. Doppler radars
were used on these trial sto obtain the vel ocity of the projectiles as they flew down range.
The drag data was then extracted. The model diameter was 30.0 mm and one set of fins
were canted at 2.0° to produceroll and the other set was deflected at 0.5° to create atrim.

The models for the first series of free-flight tests had a brass nose and for the second
series, the nose was made of tungsten to shift the center of gravity forward dueto stability
aspects, as explained below. Thetotal drag was calculated from the retard of the projecti-
lesover adistance of roughly 250 m.

FLOW VISUALIZATION

Fig. 2 shows some typical shadowgraph examples for the projectile with no fin cant
for aMach number of 3.0 at 0 and 12 degrees angle of attack and at zero roll orientation.
The figures show how the flow field is highly complicated due to the interaction between
grid cellsas well asthe interaction between the grid fins and the body. Fig. 3 represents a
schematic of the flow structure near asingle fin at a=0°. At zero angle of attack, after the
attached nose shock, clearly seen in Fig. 2a, the boundary layer increases and flow along
the body separates. This separation generates a recompression shock (1) in front of the
gridfin triggered by the recirculating region (2) generated by, in our case, the solid fin at-
tachment. Due to this region, the flow is deviated and it collapses with the grid fin under
an incidence close to the angle of shock (1). At high Mach numbers, flow through the
cellsis started (swallowed) and the normal bow shock (3') observed in front of thefinsis
generated by the different webs and not by a unique choked flow located in front of the
grid fin. Shock (3") isthe upper part of the bow shock generated by the top web.

Behind the fin, one can see afirst shock (4) generated by the base of the top web fol-
lowed by multiple shock waves (5) and expansionswhose origin are dueto the front recom-
pression and web bow shocks passing through each single grid cell or by the shocks gene-
rated by the small near-wakes (6) behind each web. Close to the body, a near-wake
recompression shock (7) istriggered by the base recirculating region (8) behind the fin at-
tachment. Shock generated by thefinslocated at a90° roll angle (not represented in Fig. 3)
can also be observed.

Fig. 2b shows the same configuration at an angle of attack of 12°. The attached shock
is, as expected, more intense on the windward side and the shock system in front and
behind the grid finsis asymmetric and even more complicated than for zero angle of attack.
Along the body, the flow is also separated and interacts with the upper fin and therefore
decreasesthe efficiency of that fin. Aerodynamics of grid finsare so complex that it isvery
difficult to draw definite conclusions from the flow visudization. The planned CFD
predictions and experimental wind tunnel teststo be carried out on an up-scaled (x4) single
grid fin mounted in the test section on a partialy cylindrical splitter plate might help to
better understand the flow features around thistype of fin configurations.
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AERODYNAMIC COEFFICIENTS

Due to lack of space, only the aerodynamic coefficients then CAO, CNa, Cma, CIJ,
and XCPO will be presented as a function of Mach number over the whole Mach number
rangetested. Angle of attack variationsaswell as other fin deflections can befound in[7].

Zero Yaw Axial Force Coefficient

The axial force coefficient vs. Mach Number is shown in Fig. 4. CA is of the order of
0.9 to 1.2, and these magnitudes were expected [2, 3]. Thisis one of the principal con-
cerns of using grid fins. However, atering the cross section shape on the outer frame and
the web design [2] can reduce this high drag coefficient. In general, the trend of CAO is
that of conventional planar fins [1]. The results also show an increase of CAO of 20%
when thefins are deflected at 15° as compared to no deflections. Thisincreaseis observed
over thewhole Mach number range.

There is adifference in the measured CAO between DREV and ISL at Mach 3.0. The
ISL result is roughly 15.0 % higher than the DREV measured value. The boundary layer
in the DREV wind tunnel is laminar while it is turbulent in the ISL one. Previous wind
tunnel testsat Mach 2.5 on aclipped deltafin projectile [6] did not show large differences
asthisone. Therefore, it is believed that the difference shown here is due to the particular
grid fin and its sensitivity to the boundary layer type.

The total drag coefficients obtained from the two series of free-flight tests are also
shown in the figure. The order of magnitude and the trend agree quite well with the wind
tunnel data. At roughly Mach 2.5, there is a dlight difference in the free-flight drag data,
but thisis probably due angle of attack effects.

Normal force coefficient

Fig. 5 presents the normal force coefficient slope, CNa asafunction of Mach number.
In this case, there was only adifference of about 11% between the DREV and |SL measu-
red values at Mach 3.0. Thefirst trend to observeisthat CNa increases as the Mach num-
ber increases. Thisimpliesthat the fins become more effective as the Mach number incre-
ases while standard planar fins[1] usually have the opposite trend. At Mach 1.5, all four
configurations have the same CNa value. Supersonically, the fin effectiveness decreases
as the fin deflection increases and this difference increases with Mach number. Subsoni-
cally, thetrend isthe opposite of the supersonic one. That is, the fins are more effective at
0° deflection than at 15°. Also, subsonically, there is almost a factor of 2.0 in CNa bet-
ween fins not deflected and those deflected at 15°.
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Static pitch moment coefficient

Fig. 6 presents the Mach number effects on the pitching moment coefficient slope
Cma. Thereferencelocation for Cma is about the center of gravity, which islocated 4.03
calibers from the nose of the projectile. In this case, there was a 20.0% difference in the
measured values between DREV and ISL at Mach 3.0. Asfor CNa at Mach 1.5, Cma is
the samefour al four fin deflections. Supersonically, the static stability increaseswith in-
creasing Mach number. Thistrend is also opposite of the behavior of a planar fin. Super-
sonically, the static stability decreases as the fin deflection increases and this difference
increases with Mach number. At Mach 3.0, thereis afactor of 2.0 in Cma when the fins
are deflected at 15° and when they are not. An unexpected result was seen at Mach 0.6.
The projectile is statically unstable when the fins are deflected at 0° and 5°, marginally
stable at 10° and statically stable when all four fins are deflected at 15°. Asfor CNa, the
trend is again opposite of the supersonic one.

Center of Pressure

The center of pressures (about the base of the projectile) from the experimental tests
are compared vs. Mach number in Fig. 7. Supersonically, XCP0O is again the same at Mach
1.5 for all four fin deflections, and just aft of the center of gravity. XCPO moves to the
back of the projectile towards the fins, which implies that the projectile becomes more
stable, with increasing Mach number. The static stability, defined as the difference bet-
ween the center of pressure and the center of gravity, is decreasing with increasing fin de-
flection and this difference increases with Mach number. For example at Mach 3.0, there
is aone-caliber difference in XCPO when the fins are fully deflected and when they are
not. For the same Mach number, the ISL XCPO islocated at 0.4 caliber more towards the
nose of the projectile than the DREV measured value.

The most interesting results in this case occur subsonically. When the fins are not de-
flected, the center of pressureislocated in front of the projectile. Asthe fin deflection in-
creases, XCP0O moves backward aong the projectile, and it is behind the center of gravity
only when al four fins are fully deflected at 15°. There isamost afive caliber displace-
ment of the center of pressure with fin deflection. This means, with no doubt, that subso-
nically, the static stability of this grid fin configuration is very sensitive to the fin deflec-
tion.

Roll Moment Coefficient

Fig. 8 showsthe evolution of the roll moment coefficient Cld due to the fin deflection
vs. Mach number. The configuration with no deflections, of course, produced no roll mo-
ment or very small values. The values supplied were taken at zero angle of attack.

Supersonically, Cld increases linearly with Mach number and this was expected since
the normal coefficient slope CNa increases also with Mach number. Again this trend is
opposite of planar fins. In addition, CId is not linear with the fin deflection angle. More
so, theroll producing moment isless effective asthe fin deflection increases.
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Once more, subsonically, an interesting result is observed. When the fins are deflected
at 10° and 15°, Cld is negative and it is positive when the fins are deflected at 5°, indica-
ting aroll reversal. Thisresult, not shown here, was also seen when the model was orien-
ted at aroll angle of 45°.

CONCLUSION

A detailed wind tunnel experimental investigation was conducted for a grid finned
projectile configuration with fins deflected at different angles and for Mach numbers rang-
ing from 0.6 to 3.0. Incidence varied for angles between -15° and +15° and fin roll orien-
tations were of 0o and 450. Mach number dependencies on axial force, normal force,
pitching moment, center of pressure location and roll moment were obtained. Drag data
obtained from free-flight testswere also compared.

Overdl, the trend of CNa and Cma for the grid finned projectile is opposite of a
standard planar finned projectile. That is, for aconstant fin deflection, the effectiveness of
the fins and the static stability increases as the Mach number increases, supersonically.
On the other hand, subsonically (at Mach 0.6), the projectile is statically unstable while
for aplanar fin, itisstatically stable.

The results showed that all the aerodynamic coefficients were very sensitive to the de-
flection angle of the fins, and at the same Mach number, there were large differencesin
theresults. Aswell, the trend with Mach number was reversed when going from subsonic
to supersonic.

One very interesting result was observed subsonically. When the fins were not deflec-
ted, the center of pressure was located in front of the projectile, and when the fins were
deflected, it shifted towardsthe back of the model.

Aroll reversal was detected at Mach 0.6 that was dependent on the fin deflection.

These results are not only a very important set of aerodynamic force and moment
coefficients that describes the behavior of grid fin technology. They constitute areliable
database that can be used as areference for the validation of CFD codes or empirical/ana-
Iytical tools. The use CFD coupled to wind tunnel tests on asingle grid fin mounted on a
splitter plate will certainly be a most promising tool for the analysis of flow conditions
around the grid fins and inside the grid cells. Aeroballistic range free flight tests will be
carried out in the near future and the present experimental data and CFD analysiswill be
compared with those resullts.
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Figure 1: Grid fin projectile configuration (caliber, 1 cal = 20 mm).

Fig. 2a: Angle of attack = 0.0°.

Figure 2: Shadowgraph of projectilewith =0.0° (M = 3.0).
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