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INTRODUCTION

The use of small finlets on projectiles to reduce the spin in flight in a controlled man-
ner offers possibilities for range limited rounds. This technology involves modifying the
spin stabilized projectile to decrease the spin rate in a controlled manner so that the onset
of gyroscopic instability occurs at a specified range, usually the effective range of the in
service round. Afterwards, the instability causes the projectile angle of attack to increase,
which may lead to the tumbling, causing very high drag, thus limiting the maximum
range. The fins must be carefully designed so that the projectile becomes unstable at the
desired range. The onset of gyroscopic instability depends primarily on the length and
height of the fins as well as their location on the projectile. 

Having small finlets at the aft end of the projectile causes the flow to be modified signi-
ficantly and various free-flight tests [1–5] have shown that a high Magnus moment results.
The Magnus moment, in many cases, was highly nonlinear. Magnus instabilities were noti-
ced in some instances leading to projectiles flying with a high amplitude limit cycle.

At one particular Mach number, the angular motion of three projectiles fired at the
same Mach number showed different angular motions. Two were fired with a high initial
angle of attack of 15.0° and one at roughly 8.0°. The angle of attack history for the projec-
tile fired at the low angle of attack damped normally while the two projectiles fired at
15.0° angle of attack damped initially and reached a limit cycle amplitude of about 5.0° at
the end of the range (Fig. 1). The limit cycle was identified as Magnus Instability. 

Free-flight tests were conducted in the Defence Research Establishment Val-
cartier (DREV) aeroballistic range on a spinning projectile with roll damping
finlets at Mach 1.7. All the main aerodynamic coefficients and dynamic stabi-
lity derivatives as well as nonlinear one were very well determined. One pro-
jectile damped naturally while two others showed a limit cycle amplitude. High
order Magnus moment coefficient terms explained the measured angular mo-
tion. A comparison, with and without the high order Magnus term, was conduc-
ted to explain the flight dynamic behavior. A dynamic stability analysis was
also performed to explain the motion.
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Since one projectile damps and the other two do not, this suggests a flight dynamic be-
havior dependant on the initial angle of attack. When the shots were solved individually,
the Magnus characterization for the shot at low angle of attack was completely different
from the ones fired at the high angles of attack. When the three shots were solved simulta-
neously in a multiple fit data reduction, the best fit was obtained when a fifth order Mag-
nus coefficient expansion was utilized. 

The complete aerodynamic coefficients obtained for this configuration at Mach 1.7 is
provided. A comparison of the results of the single and multiple fit data reductions, with
and without the fifth order Magnus term, will be explained to provide insight in the insta-
bility aspects, flight dynamic behavior and the limitations of the expansion that was utili-
zed for the Magnus moment. 

MODEL CONFIGURATION

The projectile configuration that was studied is presented in Fig. 2. The ogive of this
rear fin configuration has a radius of 8.92 cal of 2.01 cal in length with a meplat diameter
of 0.16 cal. The ogive was followed with a short cylindrical length of 1.23 cal. The rear of
the projectile continued with a 5° boattail with a length of 0.45 cal. Four sub-caliber roun-
ded fins were located at the rear of the boattail on a 1.13 cal long cylindrical section with a
total fin span of 0.92 cal. The total length of this configuration was 4.82 cal with a center
of gravity positioned at 2.64 cal from the nose tip. The fin thickness at the extreme diame-
ter was 0.13 cal. The details of the fin geometry are given in [2]. The projectiles were
made of steel and the physical properties are given in Table 1.

EXPERIMENTAL FACILITIES and DATA ANALYSIS

DREV Aeroballistic Range

The Defense Research Establishment Valcartier (DREV) Aeroballistic Range [6] is an
insulated steel-clad concrete structure used to study the exterior ballistics of various free-
flight configurations. The range complex consists of a gun bay, control room and the in-
strumented range. Projectiles of caliber ranging from 5.56 to 155 mm, including tracer
types, may be launched. The 230-meter instrumented length of the range has a 6.1-m
square cross section with a possibility of 54 instrumented sites along the range. These
sites house fully instrumented orthogonal shadowgraph stations that yield photographs of
the shadow of the projectile as it flies down the range. 

Data Analysis

Extraction of the aerodynamic coefficients and stability derivatives is the primary
goal in analyzing the trajectories measured in the DREV aeroballistic range. This is done
by means of the Aeroballistic Range Data Analysis System (ARFDAS, [7]). The data ana-
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lysis consists of linear theory, 6 DOF single- and multiple-fit data reduction techniques
with the Maximum Likelihood Method to match the theoretical trajectory with the experi-
mentally measured trajectory. The MLM is an iterative procedure that adjusts the aerody-
namic coefficients to maximize a likelihood function. The application of this likelihood
function eliminates the inherent assumption in least square theory that the magnitude of
the measurement noise must be consistent between parameters (irrespective of units). In
general, the aerodynamic coefficients are nonlinear functions of angle of attack, Mach
number and roll angle.

The 6DOF data reduction system can also simultaneously fit multiple data sets (up to
five) to a common set of aerodynamics. Using this multiple-fit approach, a more complete
range of angle of attack and roll orientation combinations is available for analysis than would
be available from a single flight. This increases the probability that the determined aerodyna-
mic coefficients define the model's aerodynamics over the entire range of test conditions.

The aerodynamic data presented in this paper were obtained using the fixed-plane
6DOF analysis with both the single- and multiple-fit data correlation techniques. The
equations of motion have been derived in a fixed-plane coordinate system with Coriolis
effects included. The formal derivation of the fixed-plane model is given in [8].

For example, the aerodynamic moment in the pitch plane is defined as [7]:

The aerodynamic coefficients and derivatives are assumed to be nonlinear functions
of Mach number, sine of the total angle of attack, and the aerodynamic roll angle. The as-
sumption is made in a general sense in defining a generalized aerodynamic math model.
Again as an example, the Magnus moment coefficient expansion is given by [7]:

Cnpα = Cnpα + Cnpα3ε2 +Cnpα5ε4;  ε = sin(total angle of attack)

The data reduction process involves obtaining the “right” aerodynamic model for the
projectile studied with the least number of aerodynamic coefficients till the accuracy of
the range is attained, if possible. Many test programs in the DREV aeroballistic range
have yielded standard deviations between the theoretical determined trajectories with the
reduced coefficients and the experimental one of the order of 0.1° in angle, 0.5 mm in the
downrange direction, 0.3 mm in swerve and 1.0° in roll.

RESULTS AND DISCUSSIONS

The determined aerodynamic coefficients, their respective standard deviation and the
standard deviation between the theoretical and experimental trajectories for the positio-
nal, angular and roll motions are given in Tables 2 and 3 for the single- and multiple-fit
data reduction, respectively. All the aerodynamic coefficients are given at the average
Mach number.
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A coefficient that appears with a value and a (*) in parentheses directly below indica-
tes that this coefficient was held constant. One that has a (–) in parentheses indicates that
this coefficient was solved for and that the standard deviation for this coefficient is higher
than 100%, that is, it does not influence the fit, and is considered undetermined. Those
coefficients with numbers in parenthesis represent the standard deviation for that particu-
lar coefficient.

In some instances, the results showed more variation in CX0 and Clp than would be
expected at the same Mach number for all the configurations. This might be related to
non-uniform engraving of the projectiles from the rifling of the gun tube. Therefore, the
multiple-fit data reductions were conducted as follows. For a shot grouping, the values for
CX0 and Clp were held constant at the average of the single-fit results. The variations
from this value were then uniquely solved for each shot. These variations are also given in
the multiple-fit result tables as well as their standard deviation. 

All the main aerodynamic coefficients (CX0, CNα, CMα, CMq, Cnpα and Clp) were very
well determined. It will be noticed in Table 3, that the shot C07 was also used in the data
analysis of the multiple-fit. The data reduction of these three shots at Mach 1.6 provided
quite a challenge. The angular motion of shot C07 showed an initial angle of attack of ap-
proximately 7.5° that damped to a small limit cycle of 1.5° at the end of the range (Fig. 1).
Two shots fired (C08 and C09), at the same Mach number, show a complete different angu-
lar motion behavior than shot C07. The initial angles of attack of these two shots were of the
order of 15.0° and the motion damped to a limit cycle of roughly 5.0° at the end of the range.

Normally, these three shots could be reduced in a multiple-fit data reduction if the mo-
deling of the aerodynamic coefficients is appropriate, especially for the Magnus moment,
in this case. In the previous data reduction for shot C07 [2], Cnpα was determined at 1.1
(9%), while Cnpα3 was deduced at –131.7 (16%), with the standard deviation in parenthe-
ses. The dynamic stability analysis conducted [2] was consistent with the observed angular
limit cycle of about 1.5°. The standard deviation in the motion was acceptable at 0.3° in the
angular motion, 1.0 mm and 0.7 mm in the downrange and swerve directions, respectively. 

Two groups of multiple fit were used for the data reduction of these three shots. One
multiple-fit group was with shot C08 and C09 and the other one with all three shots inclu-
ded. The only successful fit obtained for the three shots combined was when all three
terms in the Magnus moment expansion (Cnpα, Cnpα3 and Cnpα5) were included in the fit.
The standard deviation errors of these three coefficients are all of the order of 15%. It will
also be noticed that, due to the high angles of attack obtained on two shots, many nonli-
near terms (CXα2, CNα3 and CMα3 ) were well determined. Cnpα5 was kept constant at
736.0 when conducting the multiple-fit data reduction for shot C08 and C09 and the other
determined aerodynamic coefficients are consistent with the multiple-fit group with the
three shots. This adds some validity to the determined value of Cnpα5. The standard devi-
ation of the angular motion is of the order of 0.6, which is considered high. It is quite li-
kely that the Magnus model as polynomial expansion past Cnpα3 is not quite adequate to
model the observed motion.

Most of the nonlinear aerodynamic coefficients were held constant at the multiple-fit
values for the single fit data reduction for shot C07 but they were solved for shot C08 and
C09. Cnpα5 in the single fits was held constant at the multiple determined value of 736.0
and Cnpα and Cnpα3 were solved for. The reduced main aerodynamic coefficients as well
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as the nonlinear ones for shots C08 and C09 are compatible with the multiple-fit data re-
ductions. On the other hand, when solved individually, the determined CMq, Cnpα and
Cnpα3 values for shot C07 do not agree with the multiple-fit data reductions. This is pro-
bably expected since the multiple-fit data reductions are governed by two shots at high
angles of attack and with a different limit cycle than the lower angle of attack shot. The
standard deviation of the angular motion of the single-fits are 33% lower than the multi-
ple-fit data reductions, further indicating that the Magnus modeling is probably not quite
right. 

Dynamic stability analysis

The stability plots for the projectile are provided in Fig. 3 at for two cases. The first
case, Fig. 3a is for the three shots C07, C08 and C09 while Fig. 3b is for shots C08 and
C09. This was done to show the consistency in the results. The limit cycle amplitudes for
shot C08 and C09 at mid-range were of the order of 7.0° and shot C07 damped normally.
The dynamic stability plot specifies that a limit cycle of roughly 8.0° to 9.0° should be ob-
tained and this does not precisely match the observed motion since it is believed that the
Magnus expansion model is not precise to model the observed motion, especially the fifth
order term. Also, the dynamic stability analysis formulation [2] assumes linear aerodyna-
mic coefficients and this is definitely not the case. A cubic Magnus term does predict the
limits cycles quite adequately [1-4] with the linear assumptions of the formulation, but a
fifth order Magnus term is probably beyond the bounds of the application.

Nevertheless the two flight dynamic modes are explained quite adequately in Fig. 3.
That is, a projectile that has initial low yaws of less than 8.0° to 9.0°, like shot C07, will
damp normally and those that have high initial angles of attack above 10.0°, like shots
C08 and C09, will acquire a limit cycle of roughly 8.0°. The initial angles of attack for
shot C08 and C09 were of the order of 15.0° while shot C07 had an initial incidence of
7.0°. 

CONCLUSIONS

A series of free-flight tests were conducted in the DREV aeroballistic range to obtain
the aerodynamic coefficients and stability derivatives of a 0.50 cal range limited projec-
tile concept. This investigation was conducted to increase the database for design purpo-
ses and to validate Computational Fluid Dynamic and empirical/analytical predictions
tools. 

All the main aerodynamic coefficients (CX0, CNα, CMα, CMq, Cnpα and Clp) were
very well determined for this configuration and Mach number. The cubic term (Cnpα3)
and the fifth order term (Cnpα5) in the Magnus coefficient expansion were also resolved.
Nonlinear terms in the axial force (CXα2), in the static pitch moment coefficient (CMα3)
and in the normal force coefficient (CNα3) were well reduced.
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TABLE I

Nominal physical properties of model

Fig. 1 – Angular motion plots. Fig. 2 – Projectile configuration. 

Fig. 3a – shots C07, C08 and C09. Fig. 3b – Shots C08 and C09.
Fig. 3 – Dynamic stability plots.
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