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INTRODUCTION

Automatic grenade launchers are the best answer to a very concrete operational requi-
rements which justify their introduction as an additional weapon type at company (or
equivalent) level. Current automatic grenade launchers exhibit technical characteristics
linking them to the other area weapons deployed at the same echelon level, in particular to
machine guns and mortars. When one properly considers the three basic criteria – mobil-
ity, firepower and self-sustainability – according to which infantry combat units are orga-
nised, it becomes evident that each level must be given the tools to rapidly and effectively
solve the most critical situations in which it could find itself, without having to rely on
fire support from upper levels. Automatic grenade launchers are intended to solve that
problem [1,2].

Current automatic grenade launchers renew the interest for the interior ballistic princi-
ple of high/low pressure chambers which is applied in them. In order to improve ignition
of propellant charge and uniformity of grenade velocities we applied the interior ballistic
principle of high/low pressure chambers instead of classical one in 30 mm automatic gre-
nade launcher. Through theoretical modelling and experimental investigations we consi-
der influence of different factors on the interior ballistic characteristics of modified con-
cept.

Automatic grenade launchers renew the interest for the interior ballistic princi-
ple of high/low pressure chambers which is applied in them. For the sake of
principle optimisation in the specific automatic grenade launcher the theoreti-
cal and experimental investigations are carried out. In theoretical modelling
special attention is paid to flow of two-phase mixture of propellant gases and
unburned propellant from the high-pressure chamber to the low-pressure cham-
ber, and to continuation of propellant combustion in the low-pressure chamber
and the launcher barrel. Through experimental investigations the influence of
propellant type, relation of chamber volumes, number, dimensions, and posi-
tion of holes in wall separating chambers, and type of liner across the holes are
studied. All these influences the code based on theoretical considerations simu-
lates correctly.
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THEORETICAL MODEL

Interior Ballistic Cycle

The schematic presentation of interior ballistic cycle in the automatic grenade laun-
cher using the high/low pressure chambers principle is given in Fig. 1.

Figure 1.

The interior ballistic cycle starts with initiation of ignition cup and ignition of propel-
lant charge placed in the high-pressure chamber (see Fig. 1-a). The propellant charge
burns in the constant volume of high-pressure chamber until the moment when the pro-
pellant gas pressure achieves the value pe at which the propellant charge covering and ad-
ditional liner are penetrated. Then starts flowing out of propellant gases and ignited pro-
pellant grains through holes on the separating wall between the high-pressure and
low-pressure chambers (see Fig. 1-b). The part of propellant charge burns on high pres-
sure achieved in the high-pressure chamber, and the part of propellant charge which pas-
ses through holes continues to burn in the low-pressure chamber. When the pressure in the
low-pressure chamber achieves the grenade start value ps the grenade starts to move in
the launcher barrel (see Fig. 1-c). During firing the propellant combustion first ends in the
high-pressure chamber. Then through holes flow only propellant gases, and the propellant
combustion in the low-pressure chamber is near the end (see Fig. 1-d). After the end of
propellant combustion the grenade is further accelerated due to propellant gases expan-
sion.

Basic system of equations

Using the usual interior ballistic assumptions the system of equations which describes
physical processes in the system with high/low pressure chambers gets the following
form:
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a) High-pressure chamber
– equations of propellant burning

(1)

–  energy equation
(2)

– flow out equations of propellant gases and propellant through holes

3)

In previous equations the following symbols are used: p – mean ballistic pressure in
high pressure chamber, ω– propellant charge mass, ωi – igniter mass, f – propellant force,
fi – igniter force, δ – propellant density, W0 – volume of high-pressure chamber, z – pro-
pellant mass share burned in high-pressure chamber, η – propellant gases mass share flo-
wed out through holes, ξ – propellant mass share flowed out through holes, α – covolume,
w – relative burnt web of propellant grain, 2e0 – propellant web, 2e – propellant burned
web, t – time, a, b, n – burning law constants, C1, C2, C3 – shape coefficient of propellant
grain, m· – mass flow rate of propellant gases through holes, m·

p – propellant mass flow
rate through holes.

b) Low-pressure chamber
– equations of propellant burning

(4)

– energy equation

(5)

– equations of grenade moving

(6)

In previous equations is: p1 – mean ballistic pressure in low-pressure chamber and
launcher barrel, ϕ – coefficient of fictitious grenade mass, W1 – volume of low pressure
chamber, z1 – propellant mass share burned in low-pressure chamber, κ – coefficient of
propellant gases adiabatic expansion, mgr – grenade mass, Vgr – grenade velocity, s – sur-
face of barrel cross-section, X – grenade path in barrel, w1 – relative burned web of pro-
pellant grain in low-pressure chamber, 2e1 – propellant burned web in low-pressure
chamber.
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For the sake of determination of mass flow rates of propellant gases and grains (m· and
m·

p) we consider two-phase flow through holes between chambers. This flow is treated as
homogeneous mixture of gas and solid phase. In that case the mixture adiabatic coeffi-
cient  is defined by relation:

(7)

where: cp, cυ – specific heats of propellant gases at constant pressure and at constant vo-
lume, cpr – propellant specific heat, ε – mass share of solid phase in mixture flowing
through holes. 

c) Characteristic important model relations
The flow of homogeneous mixture through holes in the separation wall between

chambers is determined by relation between pressure in the high-pressure chamber and
pressure on the bottom of low-pressure chamber. The critical pressure value on the bot-
tom of the low-pressure chamber is given by relation:

(8)

We analyse two cases:
10 p1,w ≤ p1,crit In this case the mass flow rate and flow velocity of mixture through

holes are given by expressions:

(9)

where: Sh – total surface of holes cross-sections, µ – flow out coefficient through hole.

20 p1,w ≤ p1,crit The mass flow rate of mixture through holes is determined by rela-
tion:

(10)

The flow in velocity of mixture through holes in this case is given by expression:

(11)

The mass flow rate of propellant gases (m· ) and the mass flow rate of propellant grains
(m·

p) are given by following relations: m· = (1 – ε)m·
m, m·

p = ε m·
m.

In systems with high/low pressure chambers during firing the characteristic pressure
profile is established in the low-pressure chamber and launcher barrel. For determination
of that pressure profile we use the common Lagrange assumption and the linear velocity
flow profile of two-phase mixture Vx = KX + Vfi (see Fig. 2).
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Figure 2.

Through further development (detailed development is given in [3]) we get the rela-
tion between the pressure on grenade base p1,gr and the mean ballistic pressure p1:

(12)

In the eq. (12) the mass ω' and density ρλ of two-phase mixture in the space behind the
grenade are given by relations:  ω' =ω (η + ξ) ρλ = ω'/(W1 + sX).

The pressure on the bottom of low-pressure chamber p1,w is given by expression:

(13)

d) Computer code
The system of equations which describes the interior ballistic cycle of the system with

high/low pressure chambers is composed of the first order ordinary differential equations
and algebraic ones. Solving of the system of ordinary differential equations by the fourth-
order Runge-Kutta method is done. For computation of firing in the automatic grenade
launcher with high/low pressure chambers HILOP code is formed. In Fig. 3 computed
mean pressures in high and low pressure chambers, p and p1, respectively, as functions of
time t are shown (propellant charge is composed of 2.7 g of nitrocellulose propellant
NC1).
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Figure 3.

EXPERIMENTAL INVESTIGATIONS AND MODEL
VERIFICATION

Experimental investigations performed in 30 mm automatic grenade launcher had two
main goals: optimisation of design and propelling characteristics of concept of high/low
pressure chambers, and verification of presented theoretical model.

Through experimental investigations the influence of propellant type, relation of
chamber volumes, number, dimensions, and position of holes in wall separating cham-
bers, and type of liner across the holes are studied. Boundaries of  range of studied in-
fluence parameters were limited by the existing system configuration.

The influence of propellant type on basic interior ballistic characteristics is presented
in Table 1.

Table 1

Data given in Table 1 show good correspondence between experimental and calcula-
tion results. According to ballistic requirements the nitrocellulose propellant NC1 gives
better results then the doublebase propellant NG1. All further experimental investigations
are carried out with the propellant NC1.
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 Experiment  2605  1456  176.4

 2.7 g  NC1
 Computation  2629  1491  177.3
 Experiment  2982  1875  184.3

 2.3 g  NG1  Computation  3034  1893  184.2
Remarks: pm – maximum pressure in high-pressure chamber, p1,wm – maximum pressure

on the bottom of low-pressure chamber, V0  – grenade muzzle velocity.



The influence of relation of chamber volumes on basic ballistic characteristic is given
in Table 2. Data given in Table 2 show good correspondence between experimental and
calculation results. 

Table 2

The propellant charge is placed in the celluloid covering. In desire to increase the inte-
rior ballistic cycle uniformity additional brass liners of different thickness were placed
across the holes in the wall separating chambers. Results of this investigations are given
in Table 3. 

Table 3

The program HILOP adequately estimates the influence of the propelling charge co-
vering and the additional liner on holes on the wall between chambers.

For determination of influence of number and diameter of holes in the wall between
chambers experiments with 6 holes of 3.0 mm diameter, 6 holes of 3.3 mm diameter and 9
holes of 2.1 mm are carried out. Results of this investigation are presented in Table 4.

Table 4

Data given in Table 4 show good correspondence between experimental and calcula-
tion results.

The choice of optimal design and propelling characteristics of the system with
high/low pressure chambers depends on the concrete ballistic requirements.
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 W0/W1
 pm

 [bar]
 p1,wm

 [bar]
 V0

 [m/s]
 Experiment  2605  1456  176.4

 10
 Computation 2629 1491 177.3
 Experiment 2769 1401 177.2

140  Computation 2778 1421 178.4

 Liner
  pm

 [bar]
 p1,wm

 [bar]
 V0

 [m/s]
 Experiment 2605 1456 176.4

 celluloid  Computation 2629 1491 177.3
 Experiment 2785 1607 178.6 celluloid +

 0.1 mm brass  Computation 2827 1555 179.3
 Experiment 2961 1677 180.3 celluloid +

 0.2 mm brass  Computation 3002 1644 181.0

 Propellant
charge

Holes
(number x diameter)

  pm

 [bar]
 p1,wm

 [bar]
 V0

 [m/s]
 Experiment 2605 1456 176.4

 2.7 g  NC1 6 x 3.0 mm  Computation 2629 1491 177.3
 Experiment 3518 1661 183.5

 3.0 g  NC1 6 x 3.3 mm  Computation 3561 1665 184.8
 Experiment 2430 1438 178.2

 3.0 g  NC1 9 x 2.1 mm  Computation 2462 1451 178.3



CONCLUSIONS

Based on previous considerations we can make the following conclusions:
– Automatic grenade launchers are contemporary systems which applications is actuali-

sed last years.
– In the interior ballistic sense automatic grenade launchers renew the interest for the

concept of high/low pressure chambers.
– The mathematical model for system with high/low pressure chambers is developed

and the computer code HILOP is established.
– The mathematical model is verified through comparison with data of experimental in-

vestigations of influence of different factors on interior ballistic characteristics.
– Experimental investigations and  verified theoretical model enable optimisation of de-

sign and propelling characteristics for the system with high/low pressure chambers.
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