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BURNING CHARACTERISTICS
OF FOAMED POLYMER BONDED PROPELLANTS

Thomas S. Fischer and Angelika Messmer

Fraunhofer Ingtitut fir Chemische Technologie, Joseph-von-Fraunhofer-Str. 7,
76327 Pfinztal, Deutschland

Foamed polymer bonded propellants show performance on high energy level
combined with variable material and burning characteristics. Properties can be
varied in awide range by changing the formulation as well as by adjusting the
internal porous structure. Closed vessel test results are presented showing the
dependence of the burning behaviour on the porous structure. Since current
predictions of interior ballistics simulations fail when based on a straightfor-
ward use of Vieille's law a new model has been developed. Simulation results
describing the specia interior ballistic behaviour of porous charges on that ba-
sis are presented. Explicit consideration of the internal structure in the model
enables the qualitative description of the burning characteristics found in expe-
rimentsand are abasisto predict the influence of parameter changes on them.

INTRODUCTION

Foamed polymer bonded propellants devel oped by Fraunhofer ICT show variable mate-
rial and burning characterigtics [1,2]. In addition the charges have performance on a high
energy level. Realised applications are combustible cases and casel essammunition [ 3,2].

Foamed propellants can be produced with a high reproducibility by reaction injection
moulding. The properties of these foamed propellants can be varied in a wide range by
changing the formulation aswell as by adjusting the internal porous structure. Therefore a
special interior ballistic behaviour can be achieved without changing the shape of the pro-
pellant. Since foamed propellants can be easily produced even in very complex shapes,
further applications like modular charges, fixing of ammunition components by surroun-
ded foam and gradient charges are possible.
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The burning characteristics of these porous charges show specialities compared to
standard gun propellants. The mass conversion rates lie essentially above those obtained
by the linear burning of compact materials. The burning behaviour deviatesfrom Vieille's
law and current predictions of interior ballistic simulations fail when based on a straight-
forward use of it [4,5]. To simulate the closed vessel behaviour found in experiments a
phenomenol ogical model has been developed [6] and improved [7].

In this proceedings a brief outline concerning the measured and modelled special
burning characteristicsisgiven.

EXPERIMENTS: INFLUENCE OF THE POROUS STRUCTURE
ON BURNING CHARACTERISTICS

Burning characteristics and mechanical properties of foamed propellants are determi-
ned by components and additives, but also by porosity and inner surface (i.e. in other
words density and pore size distribution). The porous structure can be varied in a wide
range by additiveslike catalysts, foaming agents, foaming initiators and stabilisers and by
processing parameters like temperature. Based on this foamed propellants with different
pore size distribution but constant density (charge mass/charge volume) can be achieved.
Fig. 1 presents the effective linear burning rate of two porous charges of same density
(0,765 g/cm3) in comparison with gun propellant JA2 (density 1,586 g/cm3).
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Figure 1: Effectivelinear burning rate (JA2 and porous charges VA and VB).
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Caused by the pores the mass conversion rates are essentially increased compared to
standard gun propellants. This leads to the characteristic massively enlarged effective li-
near burning rates. In Fig. 2 a photograph of afoamed porous charge is shown on the left
side. Also the influence of pore diameter and total pore volume on the inner surface is
presented for the simplification that all poresare of identical diameter.
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Figure 2: Foamed charge, influence of pore diameter on inner surface.

Fig. 3 presents the influence of density changes and the strong influence of microporo-
sities on the dynamic vivacity measured in closed vessel experiments. The samples had
cube geometry (1 cm3) and the non-porous charge (with density 1.56 g/cm3) shows the
degressive burning behaviour normally found for compact charges with cube geometry.

Using the form function of anon-porous propellant and Vieille'slaw to analyse closed
vessel data, linear burning rates are achieved which are not independent from the loading
density. The gradientisnot identical asit used to be for non-porous gun propellants. Fig. 4
presents the effective linear burning rate derived from experiments with cubic samples
(2 cmB) in @106 ml closed vessal. Influences of variations of additional basic parameters
are presented in [1,2,4,7]. Since the density of the charge and the ratio of energetic fillers
can influence the burning characteristics in an opposite manner, burning rate and specific
energy can be adjusted independently from each other. For example, keeping the pore size
distribution constant while increasing the density of foamed propellants causes a higher
energy density but decreasesthe burning rate at the sametime.

Concerning standard propellants Vieille's law describes the dependence of the bur-
ning rate on pressure with sufficient accuracy over three magnitudes of pressure even if
minor modifications areintroduced, but it is not applicablefor porous propellants.
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Figure 3: Influence of density changes on vivacity,
closed vessel experimentsin 106 ml vessel, loading density 0,2 g/cm3.
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Figure4: Loading density influence on the effective linear burning rate on aporouscharge.
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Since the linear burning rate is amajor input to the simulation of the interior ballistic
behaviour of gun propellants which is obtained by closed vessel experiments or gun fir-
ings[8,9], for foamed propellants modifications of Vieille'slaw or new models haveto be
developed. A short description of aphenomenological model valid to describe the burning
characteristics of porous charges and simulation results are presented in the next section.

MODEL: SIMULATION RESULTS AND BURNING
CHARACTERISTICS

The burning behaviour of porous foamed propellants deviates from Vieille's law.
Some theoretical approaches assume that hot gases of the flame penetrate the porous so-
lid. The gases generate hot spotsin the propellant pores which evolve to (quasi) spherical
burning zones. Thisleadsto an increased burning surface and therefore in consequence to
ahigher burning rate. Also the effect of stand-off distances of the flame which depend on
pressure hasto be taken into account [5].

Theimplementation of these effectsto interior ballistic calculations at Fraunhofer ICT
is obtained by a phenomenological model using the concept of cellular automates[4,6]. It
enablesto apply the linear burning rate to the enlarging pores of burning energetic materi-
als. 3 dimensional form functions are obtained by aformal procedure. In addition on the
basis of the Nobel-Abel-equation the adiabatic pressure rise in a closed vessel is simula-
ted. Closed vessel tests with non-porous and porous propellants were used to modify the
model parameters.
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Figure5: Simulation of the loading density influence on linear burning rate.

Input parameters for the calculations are data of ICT-Thermodynamic Code [10]
(mean molecular weight of the generated gases, covolume, density, flame temperature),
Vieille's law results of non-porous propellants, charge geometry, consideration of inner
structure, assumptions on gas penetration and experiment parameterslike loading density,
bomb volume and ambient temperature.
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As an example the theoretical calculations of the linear burning rate are shown in de-
pendence on loading density for a porous and non-porous charge (Fig. 5). With increasing
porosity the burning ratesrise to the same quantity aspresentedin Fig. 4. InFig. 6 and Fig. 7
the influence of total pore volume and of pore diameter changes on dynamic vivacity is
demonstrated. In both casesthe porous structure was simulated by an simplified ensemble
of pores(see Fig. 2) to mark the effects:

In Fig. 6 the density of the charge was changed from a compact charge to acharge in-
cluding pores with atotal volume of up to 40% of the volume of the non-porous charge,
that means that the density is decreased down to 60%. In this case the diameter of al
pores was kept constant (0.25 mm). In Fig. 7 the total pore volume was identical for all
calculations (40%) (i.e. the density was kept constant) but the pore diameter was varied.
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Figure 6: Simulation, influence of total pore volume on vivacity.

Both diagrams mark the massive influence not only of density but also of pore size
distribution on the burning characteristics and gave a graphic explanation of microporo-
sity effects.

A factor that makes quantitative predictions complicated is the strong influence of pe-
netration depth of interaction on the pressure rise (Fig. 8). In contrast to standard propel -
lants the reaction zone is enlarged for porous propellants. Hot spots and hot gases of the
flame penetrating the pores lead to ignition and combustion not only of the actual outer
surface but also in the depth of the porous charge. Burning interruption experiments show
that reaction zones could have depths in the order of 100 um. Future quantitative predic-
tions of interior ballistic behaviour of porous charges require experimental input and mo-
del adaptationsin thisarea. Thework isin progress.
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Figure 7: Simulation, influence of poresize (D = diameter) on vivacity.
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Figure 8: Simulation of the influence of interaction penetration depth on pressurerise.

CONCLUSIONS

Explicit consideration of the internal structure of porous charges in our interior ball-
istic model enablesthe qualitative description of the burning phenomenafound in experi-
ments. This comprise changes of density, formulation, geometry, pore size and pore dis-
tribution but aso influences of experimental parameters like loading density. On this
basis predictions on the special interior ballistic behaviour of geometrically complex po-

rous chargesare possible.
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