
XXXX

289

19th International Symposium of Ballistics, 7–11 May 2001, Interlaken, Switzerland

NUMERICAL ANAYSIS OF THE PROPAGATING BLAST WAVE
IN A FIRING RANGE

K. Sakamoto1, K. Matsunaga2, J. Fukushima3 and A. Tanaka4

1 Ishikawajima-harima Heavy Industries Co., Ltd., 1, Shin-Nakahara-cho, Isogo-ku,
Yokohama, 235-8501, Japan 

2 Ishikawajima-harima Heavy Industries Co., Ltd., 2-16, Toyosu 3-chome, Koto-ku, 
Tokyo, 135-8733, Japan 

3 Ishikawajima-harima Heavy Industries Systems Co., Ltd., 2-16, Toyosu 3-chome, 
Koto-ku, Tokyo, 135-8733, Japan 

4 Japan Defense Agency, 2-2-1, Nakumeguro, Meguro-ku, Tokyo, 153-8630, Japan

INTRODUCTION

The blast wave propagating in a firing range might damage the hearing organs of ope-
rators without some suitable protections. In order to perform firing tests safely in the fir-
ing range, it is important to predict the peak overpressure precisely. In this study, a large
cannon with complicated muzzle device is focused on without projectile. The computa-
tional domain is the whole of the firing range included the artillery and the control office.
In order to capture the flow field of the muzzle, high spatial resolution is necessary. On
the other hand, the spatial scale of the firing range is much larger than around the muzzle.
If the computational grid size of the firing range is as thick as the muzzle device region,
big computational memories are necessary. In order to simplify the problem, the firing
range is divided into three domains – A) space near the muzzle device, B) domain around
the artillery and C) whole firing range (see Fig. 1). Each domain is calculated independ-
ently. On the boundaries of each computational domain, physical properties are adopted
these solved in correspond to the inner domain. We use personal computer which specifi-
cations are as following.

The objective of this study is to simulate numerically the propagating blast
wave in a firing range and to predict the overpressure level. Firing ranges for
large cannons are so huge that it is necessary to simplify the problem. The fir-
ing range is divided into three domains – A) space near the muzzle device, 
B) domain around the artillery and C) whole firing range. Computational grids
are generated to be paid attention to resolute adequately solid boundaries of the
muzzle device, the artillery and the control office in each domain. The solutions
on the outer boundaries of each domain are substituted as inner boundary con-
ditions next to other domain. Computational results show the qualitative beha-
vior of blast wave in each domain. The wave shape (N-shape) and the overpres-
sure level of the blast wave show favorable agreement with measured data.
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CPU: DEC Alpha 21164A
Clock: 600 MHz 
Memory: 320 MB

Thus this simulation can be done within expected the computational memories, time
and costs can be saved. This paper describes the useful computational method and typical
results on the propagating blast wave in the firing range.

OVERVIEW OF COMPUTATIONAL METHODS

The governing equations are three-dimensional compressible Euler equations. Roe’s
Flux Difference Splitting[1] is used for the spatial discretization and the high-order accu-
racy is achieved by the MUSCL interpolation [2,3]. For time integration the 3rd order
Runge-Kutta method is used.

The computed domain is divided into three domains – A) space near the muzzle de-
vice, B) domain around the artillery and C) whole firing range.

Space near the muzzle device (region A)

The muzzle device of a large cannon is equipped with multi stage baffles. It is a very
complicated shape. The exit diameter (D) is selected as reference length. The muzzle de-
vice region is treated as two-dimensional model. Figure 2 shows the computational grid
(grid = 405 x 123 cells, streamwise direction x direction normal to centerline). The solu-
tions of the circumference direction are approximated with coordinate transformation of
the two-dimensional computed results. The grid points near the wall of the muzzle are in-
creased. The solutions of muzzle device region are correspond to the initial condition of
this computation in the firing range. At the grid points of the outflow boundary density,
temperature, and pressure time histories are recorded. The initial condition of the muzzle
device region is assumed to have properties of the propellant gas roughly equivalent to
firing tests.

Domain around artillery region (region B)

Figure 3 shows the computational grid
around the artillery (grid = 111 x 76 x 60
cells, X x Y x Z). The muzzle region is in-
cluded in the artillery region. The grid dis-
tributions around the artillery are thick and
grid points are increased as well as the
muzzle device region. The outflow boun-
dary of the muzzle region is corresponded
with the inflow boundary of the artillery.
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Table 1: Position of pressure



The firing angle is 13 degrees. At the firing tests, four pressure sensors were set up around
the artillery and overpressure time histories were measured (see Fig. 4). The pressure sen-
sors were distributed at points on a circle of radius L, angles of theta and height of 10D
from the ground (see Table 1). The acquired data of the experiment are compared to the
computational results. In this region the outflow boundary density, temperature, and pres-
sure time histories are also recorded for computation of the firing range.

Whole firing range (region C)

Figure 5 shows the computational grid of the firing range (grid=136 x 45 x 51 cells, X
x Y x Z). The artillery region is included in the firing range region. The outflow boundary
of the artillery region is corresponded with the inflow boundary of the firing range region.
The grid points are distributed thickly around the control office.

COMPUTATIONAL RESULTS 

Region A

The pressure contour plots at time instants 0.2 and 0.6 msec are shown in Fig. 6. The
blast wave passes through the muzzle device. The blast wave flows out and diffuses from
each baffle plate. The choked flow and mach disk are well captured between the baffle
plates. The computational results show typical flowfields of the muzzle qualitatively.

Region B

Figure 7 shows the pressure contour plots around the artillery at time instants 16.6,
21.7, 30.7 and 35.4 msec. The blast wave generated from the muzzle device region propa-
gates in the artillery region. The blast wave gets over the artillery and flows out from out-
flow boundary. The propagation of the blast wave to the backward direction takes more
time to get over the barrier. The experimental and computational pressure time histories
are shown in Fig. 8. These data are recorded at the four measuring points around the artil-
lery above mentioned. It is confirmed that the wave shape (N-shape) and the overpressure
level show good agreement with measured data. However it is found that the peak over-
pressure is truncated. It is necessary to improve further grid refinement.

Region C

Finally, the whole of the firing range is computed. Figure 9 shows pressure contour
plots at time instants 33.0 and 89.5 msec. The blast wave generated from the artillery re-
gion propagates in the firing range and reaches the control office. The characteristics of
the propagating blast wave are captured, tbat is diffusion and spherically development.
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However, the truncated solutions in the artillery region are transmitted to the firing re-
gion, the blast wave is not clear.

CONCLUDING REMARKS

We tried to compute the propagating blast wave in the whole of firing range consider-
ing the characteristics of blast wave. The computational domain is devided into three re-
gions. Computing blast wave of these region seriously, we can simulate by using personal
computer in order to compact the computational memory, time and costs. The computa-
tional results said the basic characteristics of the propagating blast wave in the firing
range can be discussed adequately. That is the direction of the propagating blast wave, the
effects of barriers and the comparison with measured data near the artillery. However
shape of blast wave were not clear in the position where it is far from muzzle and artillery.
In the future, we will refine the spatial resolutions far from muzzle and artillery.
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Figure 1: Overview of firing range.

Figure 2: Computational grid of muzzle device (grid = 405 x 123 cells) (region: A).



Figure 3: Computational grid around the Figure 4: Measurement points
artillery (region: B) (Grid = 111 x 76 x 60 (Measurement points = M1, M2, M3, M4).
cells).

Figure 5: Computational grid of whole firing range (region: C) (Grid = 136 x 45 x 51
cells).
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Figure 6: Pressure contour plots Figure 7: Pressure contour plots
of muzzle device region (region: B). of artillery region (region: B).
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Figure 8: Overpressure time histories at measurement points in the artillery region.

Figure 9: Pressure contour plots of firing range (region: C).
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