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TEMPERATURE AND HEAT TRANSFER AT THE
COMMENCEMENT OF RIFLING OF A 155 mm GUN

Dr. B. Lawton

RMCS Cranfield University, Shrivenham, Svindon, WiIts SN6 8LA, UK

The temperature and heat transfer per round has been measured at the bore sur-
face of a 155 mm AS90 extended range ordnance. The ammunition was fired
with and without wear-reducing additive and the measurements were made
using an eroding-type surface thermocouple having response time of about a
microsecond. The heat transfer was computed from the measured temperature-
time curves. It was found that the wear-reducing additive gradually reduced the
surface temperature fluctuation from about 950°C to about 600°C, and reduced
heat transfer per round from about 950 kJ/m2 to about 600 kJ/m2, over a period
of fifty rounds. From these measurements an assessment was made of the wear
rate, the number of roundsto cook-off, and theincreasein barrel fatiguelife.

INTRODUCTION

The paper describes work carried out to support the assessment of new ammunition
for the 155 mm, 52 calibres AS90 extended range ordnance. In particular, the paper de-
scribes experimental work to determine the temperature and hesat transfer at the bore sur-
face of the barrel at or near the commencement of rifling. From these measurements it
was possible to assess the improvements in gun barrel erosion, the number of rounds to
cook-off, and the barrel’sfatiguelife.

Two charge types, designated N for normal and M for modified, were fired using new
barrels for each. Charge N was a full charge giving a muzzle velocity of about 940 m/s
and charge M attained the same muzzle velocity and maximum pressure but contained a
wear reducing additive. Over 100 rounds of each werefired inthetrial.

INSTRUMENTATION

Fast response, eroding type, thermocouples have been available from ASEA in Swe-
den and are currently available from the Medtherm Corp., USA. In this paper only the re-
sults from the ASEA thermocouple, Fig. 1, are described. A Ni-Cr centre pin is separated
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by a2 pum dielectric from aNi-Cr outer tube. The wholeis mounted in a4.5 mm diameter
tapered steel tube. The hot junction isformed at the butt-end by abrading or scratching the
butt-end to transfer athin smear of metal from the inner pin to the outer tube. Asthe sur-
face wears the hot junction continuously reforms at the new surface and maintains a
thickness of about 2 pm. The maximum temperature riseis 600°C (continuous), 1500°C
(flash), and the rise time (10% to 90%) is 1 ps. Such thermocouples are ideal for measur-
ing the temperature at the bore surface of a gun where erosion rates are usually between
1 pm per round and 100 pm per round.

Connecting E
Leads \5 %

4
Steel Tube _~NI-Cr
4.5mm Dia 5 ¢
1:50 Taper 2um Dielectric

N

NIAl g § % Surface Barrel

WA

H AN A ¥ § Copper Seal  ASEA Thermocouple

1:50 Taper
Fig. 1. Eroding-type thermocouple (1eft) and the method of fitting into the barrel (right).

The method used to fit the thermocouple into the barrel of a 155 mm gun is shownin
Fig. 1 (right). The tapered thermocoupleis pressed into a gauge mount using apressure si-
milar to that expected in the gun. The gun mount was then screwed into the barrel and
seals onto copper washers. The copper washers were adjusted in thickness to ensure the
thermocouple€’s surface did not protrude into the barrel. This was checked with a boro-
scope. The thermal diffusivity of the thermocouple is 7.3x10°6 m2/s compared to 9x10°6
m%/s for typical gun steel; consequently the thermocouple will record temperatures that
are about 11% greater than thosein typical gun steel subject to the same heat input.

The thermocouple signals, about 40 pVv/°C, were amplified using a RS amplifier
INA131APR, which has afixed gain of 100 and a frequency response from dc to 70 kHz.
About 3 m of compensating cable connected the thermocouple in the barrel to the ampli-
fiers, which were kept inside an insulated box that formed the cold junction. The amplifier
output signals passed down about 55 m of 50 Q BNC cableto aNicolet digital oscilloscope
that was set to trigger when the thermocouple temperature exceeded about 150°C. The
instrumentation was calibrated using a dc milli-voltmeter to input a known voltage at the
thermocoupl e and the gain was checked from the response at the oscilloscope. The signals
were stored on disk and were subsequently transferred to a digital computer for proces-
sing and graphing. The numerical method used to process the measured temperature-time
curves and to compute the heat transfer is described in reference[1].
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PROCEDURE

Two new barrels were used. One fired Charge N, a normal propellant without any
wear-reducing additive, whereas the other fired charge M, modified by the addition of a
wear-reducing additive. Each charge attained a maximum pressure of about 350 M Pa and
a muzzle velocity of about 940 m/s. Two trials were made with each barrel. In the first
trial the barrels started at ambient temperature but in the second trial they were pre-heated
to about 120°C. The heated section of barrel was about 2 m in length near the commence-
ment of rifling. Each trial consisted of about fifty roundsfired at arate of about one round
every six or seven minutes. Before each session two “warming rounds’ were fired. Only
seventeen of the 200 signalswere not successfully recorded, usually because the hot junc-
tion had not properly re-formed.

RESULTS
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Fig. 2. Typical temperature-time curve measured at the commencement of rifling (Ieft)
and the corresponding heat transfer-time curve (right).

A typical surface temperature measurement at the commencement of rifling isillus-
trated in Fig. 2 (left). On some signals 50 Hz background noise was present but this was
removed numerically. A diight increasein signal noise sometimes occurred between about
15 ms and 50 ms, as shown in Fig. 2, and was probably caused by the sudden movement
of the thermocouple leads as the gun recoiled. The maximum temperature in this case
reached 950°C and occurred about 5 ms after the thermocouple was uncovered by the
passage of the projectile. Shot exit occurred at about 15 ms. The temperature-time curve
was processed to determine the heat transferred, Fig. 2 (right), and shows that the total
heat transfer risesto 900 kJ/m2 at about 40 ms.

Maximum Bore Temperature
The maximum temperature of the bore surface when firing charge N and charge M in

unheated barrels is shown in Fig. 3 (left). The maximum bore temperature remained
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steady at about 950°C for the entire 50 rounds when firing the normal ammunition. Some
round to round variation, amounting to a standard deviation of 53°C is apparent. When
the modified ammunition was fired the maximum bore temperature was initially 950°C,
similar to that of the normal charge, but as the trial continued the maximum temperature
declined steadily to about 600°C afrer 40 or 50 rounds. Apparently the wear reducing ad-
ditive did not have an immediate effect but built-up steadily from round to round. This
suggests that the additive formed a thin surface coating on the bore of the barrel that in-
creased in thickness as more rounds were fired. An overnight break in the firing did not
disturb the degree of protection.

When the two charges were fired into preheated barrels, Fig. 3 (right) the maximum
bore temperature of the normal ammunition tended to increase throughout the trial from
about 1000°C at the start to about 1200°C at the end. Charge M, however, showed an im-
pressive reduction. The first round fired gave a maximum bore temperature of about
910°C but amost immediately the maximum bore temperature declined so that after
about 10 roundsit was only about 650°C. For the next 30 rounds the maximum bore tempe-
rature remained steady at this value before declining further to about 500°C after which it
quickly increased to about 750°C. This behaviour suggested that the wear-reducing addi-
tive adhered better to a hot surface and thus the built-up of protection was faster for the
pre-heated barrel and resulted in foll protection after only 10 rounds. After about 40
rounds the protective layer appears to increase again and then, becoming too thick was
partially removed from the surface causing the observed risein the maximum bore tempe-
rature. Had the trial continued, it seems likely that the maximum bore temperature would
have reduced again to about 600°C. For much of these two trials charge M was some
450°C cooler than charge N.
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Fig. 3. Maximum bore temperature for charge N and M fired in unheated barrels (left) and
in barrels preheated to about 120°C (right).
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Fig. 4. Heat transfer per round for charge N and M fired into unheated barrels (left) and
into barrels preheated to about 120°C (right).

The heat transfer per round, Fig. 4, reflects the resultsillustrated in Fig. 3. For charge
N in the unheated barrel, Fig. 4 (1eft), the total heat transfer per round remained substanti-
aly constant at about 950 kJ/m2 but for charge M it declined steadily from about 1000
kJm2 to about 600 kJ/m2 after 50 rounds. When fired into preheated barrels, Fig. 4
(right), the heat transfer per round of charge N again remained substantially constant at
about 950 kJmz2. For modified charge, charge M, the heat transfer per round declined
from about 950 kJ/m2 to about 650 kJ/m?2 after 10 rounds and thereafter remained steady
until after 40 rounds it started to decline, reaching about 500 kJ/mz2 after 45 rounds and
then suddenly increasing to about 700 kJ/m2. Again, this behaviour suggested that the
wear reducing additive adhered better to a hot surface and thus the built-up of protection
was faster for the pre-heated barrel and resulted in full protection after only 10 rounds.
After about 40 rounds the protective layer appearsto increase again and then becoming too
thick was partially removed from the surface causing the observed risein heat transfer.

ASSESSMENT

Itiswell known (2) that wear reducing additives work primarily because they reduce
the bore temperature and heat transfer and the observed relation between wear per round
and the maximum bore temperature has been confirmed by theory (3). Wear-reducing ad-
ditivesradically increase the wear-life of agun barrel. However, there are other advanta-
gesrelated to their use. The reduced heat transfer per round means that many more rounds
may be fired before abarrel reachesthe self-ignition (cook-off) temperature of the ammu-
nition. Also, the reduced temperature fluctuation at the bore surface reduces the thermal
stress fluctuation and thus reduces the depth of the initial crack. A smaller initial crack
length increases the number of rounds that must be fired before fatigue failure occurs and
thusit increasesthe barrel’sfatiguelife.
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Wear Life

To illustrate the reduction in wear caused by the additive some data relating to stand-
ard cordite (SC) may be used, Fig. 5 (left). The vertical scale of Fig. 5 is the observed
wear rate of gun barrels firing propellant SC (4) and the horizontal scale is the maximum
bore temperature calculated by the relatively simple method described in (3). For charge
N, the normal ammunition, the maximum temperature was about 1000°C, the bore d is
0.155 m, and the muzzle velocity, Cy,, is 940 m/s, thus from Fig. 5 the expected wear rate
is 18 microns per round. For charge M, the ammunition with wear reducing additive, the
maximum bore temperature is about 600°C so the expected wear rate is 1.6 microns per
round. Thusthe wear-reducing additive increases barrel life by about 10 times.
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Fig. 5. Wear characteristics of propellant SC (left) and influence of rate of fire on the
number of rounds to cook-off when firing charge N and M (right).

Cook-Off (Self-ignition)

Methods of computing gun barrel temperatures have been described by many workers
(5)(6) but the method used hereisthat described in (7) with the exception that the heat in-
put per round is taken to be the measured values for the 155 mm gun rather than the theo-
retical values. The bore temperature fluctuates from an initial temperature, often called
the quasi-steady temperature, to a maximum temperature, and then returns to its quasi-
steady temperature after a few seconds. The quasi-steady temperature is, therefore, the
long-term bore temperature that transmits heat to the ammunition when it isloaded and it
isassumed that cook-off occurs when the quasi-steady bore temperature reaches a critical
temperature. In this case the critical temperature was assumed to be 180°C. It was also as-
sumed that the gun fired at a constant rate in the range 0.5 to 10 rounds per minute. The
time taken and number of rounds fired before the barrel reached its cook-off temperature
was determined. For charge N the heat input per round was taken to be 950 kJ/m2 and for
charge M it wastaken to be 600 kJ/m2. Theresultsare shownin Fig. 5 (right).

312



Temperature and Heat Transfer at the Commencement of Rifling of a 155 mm Gun

For low rates of fire, below about 0.48 round/min for charge N, the quasi-steady tem-
perature never reached the cook-off temperature and there was no thermal limit to the
number of rounds than could be fired. As the rate of fire was increased the number of
rounds to cook-off became finite and reduced to 53 rounds at about 3 rounds/min. For
charge M there was no thermal limit for rates of fire less than 0.78 rounds/min (an im-
provement of 63%) and at 3 rounds/min cook-off occurred after about 83 rounds (an im-
provement of about 57%).

Fatigue Life

If the temperature fluctuation at the bore is caused by an impulse of heat then the tem-
perature fluctuation at any distance x from the surfaceis given by (8)

AT = 2 H, (1.2)
e pCx
Thethermal stress caused by thistemperature fluctuationis
o =LA (1.2)
1-m

Thisthermal stress causes a crack of length x= ac when the stress intensity, QoV(Ta.)
equals the critical stress intensity, K, for the gun steel. Thus from Equ. 1.2 and 1.3 the
crack lengthis

c

_2[ QEa H, T
B e (1.3)

| K (1-m) pC,

Theinitial crack length is proportional to the square of the heat input per round and so
it is expected that the crack length when firing charge M will be reduced to (600/950)2 =
0.4 of the crack length when firing charge N. From the Parislaw the fatiguelife of abarrel
isinversely proportional to the square root of the initial crack length and thus we might
expect thefatiguelife of charge M to 58% greater than the fatigue life of charge N.

CONCLUSIONS

Charge M, which contained the wear-reducing additive, reduced the maximum bore
temperature from about 950°C to about 600°C in an unheated barrel and the heat transfer
per round reduced from about 950 W/mz2 to about 600 W/m2. The reductions observed in
the preheated barrel were even greater. The reduction in bore temperature is expected to
reduce wear rate from about 18 microns per round to about 1.6 microns per round giving
an increase in barrel wear life of about 10 times. The reduced heat transfer is expected to
increase the number of rounds to cook-off from about 53 to about 83 at 3 rounds/min; an
increase of 63%. The reduced temperature fluctuation at the bore is expected to reduce
thermal stressand initial crack length resulting in a58% increasein fatiguelife.
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NOTATION

ac crack length, m Cy specific heat, JkgK

E modulus of elasticity, Pa Hoo total heat transfer, Jm2/rnd
Kiccritical stressintensity factor, Pam%® m Poisson’sratio

Q geometrical factor x distancefrom surface, m

a coefficient of thermal expansion, K1 AT temperature difference, K
p density, kg/m3 o stress, Pa
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