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INTRODUCTION

The present work deals with the ballistic pressure measurements using Doppler radar
techniques, which does not require the use of a sensor into the armament. The system sen-
sor used to measure the in-bore velocity consists of an antenna transmitting/receiving mi-
crowave radiation focused onto a mirror placed on the bore axis. The radiation is reflected
back along the same path to the antenna transmitting/receiving unit. When the projectile
starts moving, the reflected radiation will contain a Doppler shift proportional to the pro-
jectile velocity. The measurement continues until the projectile hits the mirror.

The data used in this work was collected at the Marambaia Brazilian Army Testing
Grounds, using a DR5000 Velocity Analyzer, made by Terma Elektronik AS [1]. This
equipment analyzes the reflected signal by means of Fourier Transform Technique, i.e.,
by the Short Time Fourier Transform (STFT), [2], which directly gives the Doppler fre-
quency shift and, consequently, the projectile velocity as function of time.

The in-bore velocity varies from zero to hundreds of m/s in a time lapse in the order of
miliseconds, which corresponds to a variation in frequency from zero to some hundreds

To make the ballistic pressure measurements using Doppler radar techniques,
which doesn’t require a sensor in the armament, it’s necessary to measure the in-
bore velocity, and as a consequence its acceleration and pressure are obtained.
The in-bore velocity varies from zero to hundreds of m/s in a time lapse in the or-
der of miliseconds, which corresponds to a variation in frequency from zero to
some hundreds of kHz in the Doppler signal analysis. It is well known from sig-
nal processing theory, that STFT technique, which is widely used in this analysis,
does not produce a good resolution for chirp signals of this type.
Alternative time-frequency techniques are applied to the in-bore Doppler shift
signal, in order to improve the measurement resolution. The results for the diffe-
rent techniques were compared.

LD16



of kHz in the Doppler signal analysis. It is well known from signal processing theory, that
this STFT technique does not produces a good resolution for this kind of chirp signal.

In this paper alternative time-frequency techniques are discussed and then applied to
an in-bore real Doppler shift signal, in order to improve the measurement resolution.  The
results for the different techniques were compared.

TIME-FREQUENCY ANALYSIS TECHNIQUES EMPLOYED 

The techniques tested in the present work were: STFT Spectrogram, Pseudo Wigner-
Ville Distribution, Choi-Williams Distribution, Cone-Shaped Distribution, Gabor Spec-
trogram, [3][4][5]. The purpose of these energy distributions is to divide the energy of the
signal over the two description variables: time and frequency.

STFT and the Gabor Expansion

The Gabor expansion represents a signal s[i] as the weighted sum of the frequency-
modulated and time-shifted function h[i]:

(1)

where the Gabor coefficients Cm,n are computed by the STFT:

(2)

where N denotes the number of frequency bins, and ∆M denotes the time sampling inter-
val. As long as its dual function h[i] exists, it's possible to use any funtion as γ[i]. 

STFT Spectrogram

The STFT spectrogram is defined as the modulus of the STFT:

(3)

where N represents the number of bins, and ∆M represents the time sampling interval.
The STFT based spectrogram is simple and fast, but suffers from the window effect,
which is well illustrated by [4], where they used a three-tone test signal with different
time locations to show that with a narrowband window, the time-dependent spectrum has
a high frequency resolution but a poor time resolution. While with a wideband window,
the time-dependent spectrum has a poor frequency resolution but a high  resolution in
time. This is the procedure employed at Marambaia’s Testing Grounds, using the DR5000
velocity analyzer. The results are not very good due to the lack of a good frequency reso-
lution.
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Wigner-Ville Distribution and Pseudo Wigner-Ville Distribution

For a signal s[i], the Wigner-Ville distribution (WVD) is:

(4)

where the function R[i,m] is the instantaneous correlation given by:

(5)

The WVD can also be computed by:

(6)

where:

(7)

and Z[k] denotes the Fourier transform of z[i]. The Wigner-Wille distribution is simple,
fast and has a very good resolution. However, if the analyzed signal contains more than
one component, the WVD method suffers from crossterm interference. Therefore, it
could be alleviated, assigning different weights to the instantaneous correlation R[i,m] to
supress the less important parts and enhance the fundamental ones.

There are two methods to do it. The first is in the time domain:

(8)

which is known as the Pseudo Wigner-Ville distribution (PWVD). Usually, the window
w[m] is gaussian.

The second method is in the frequency domain:

(9)

The eq. (9) is equivalent to:

(10)

where h[n] is the Fourier inverse transform of H[m] in eq. (9).
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Cohen Class

Leon Cohen [6] developed the distribution represented by the eq. (11), which took his
name:

(11)

the term Φ[i,m] denotes the kernel function. Comparing eq. (8) and eq. (10) with eq. (11),
the windows w[m] and h[m] are particular cases of the Φ[i,m], as it occurs in most of the
quadratic representations.

Choi-Williams Distribution

When the kernel is defined as in the eq. (12), the distribution is called Choi-Williams
(CWD)[3].

(12)

By adjusting the parameter α in eq. (12), it’s possible to balance  the crossterm interfe-
rence and time-frequency resolution. The greater α, less smoothing. The CWD suppress a
lot of the crossterm interference between autoterms with different time and frequency
centers. However, this technique can’t reduce the components with same frequency or lo-
calized at the same time. The CWD is a very slow algorithm.

“Cone-Shaped” Distribution

When the kernel is defined as the eq. (13), it results in a distribution called Cone-
Shaped, which, as the CWD, could reduce the crossterm interference. The algorithm is faster
than the CWD [3].

(13)

Gabor Spectrogram

Complementing the Pseudo Wigner-Ville distribution, it’s possible to preserve the
terms with major energy contributions and remove the others with minor contributions.
This representation is called as Gabor Spectrogram and it's represented by eq. (14).
Where WVDh,h′[i,k] represents the WVD of frequency modulated gaussian functions and
D is the degree of smoothing. 

(14)

For D=0, GS0[i,k] is non-negative and is similar to the STFT spectrogram. As D goes
to infinity, the Gabor spectrogram converges to the WVD.

A comparative Table between these algorithms [4] is showed on Table 1.
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Table 1

EXPERIMENTAL RESULTS

Using the experimental Doppler signals that were collected, a qualitative comparison
was made using the time-frequency techniques described above. Then, from the Doppler
signal the corresponding time-velocity graph was obtained and compared with each other.

Fig. 1 shows an example of the analysis when the STFT spectrogram was used and
confirmed a not very good frequency resolution as expected. The window used in this
case had 256 points and, as described before, the frequency resolution is not increased
simply by adding points to the window. 

Figure 1: STFT Analysis of the Doppler signal.

The same signal was analysed by the other techniques described above, and it was
confirmed the resolution enhancement and the flexibility added to the analysis. Fig. 2
shows the results using the PWVD and confirms the worst results due to the crossterms
interference. Fig. 3, Fig. 4 and Fig. 5 shows the very good results obtained using the
Cone-Shaped, Choi-Williams and Gabor respectively. Comparing with Fig. 1, a thinner
velocity curve were computed indicating a better resolution and definition. The best re-
sults were obtained using the Gabor and Cone-Shaped techniques, where the windows
has a length of 256 samples.

All these results were obtained using the software Labview and its Joint Time-Fre-
quency Analysis Toolkit, both from National Instruments, USA [4].
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Method Velocity Resolution and Crossterm Description
STFT Spectrogram Fast Poor Resolution, Robust and Non-negative
Pseudo Wigner-Ville Distribution
(PWVD)

Fast Extremely high resolution for a few types of signals.
Severe Crossterms

Choi-Williams Distribution (CWD) Very slow Less crossterms than PWVD
Cone-Shaped Distribution Slow Less crossterms interference than PWVD and CWD
Gabor Spectrogram Moderate Good resolution, Robust and Minor crossterms



Figure 2: PWVD analysis Figure 3: Cone-Shaped analysis
of the Doppler signal. of the Doppler signal.

Figure 4: Choi-Williams analysis Figure 5: Gabor analysis of the
of the Doppler signal. Doppler signal.

CONCLUSIONS

Some algorithms were showed as an alternative to the traditional Fourier method util-
ized by the equipments used by the Brazilian Testing Ground. In fact, there are other time-
frequency algorithms, which could be used.

When analyzing in-bore Doppler radar signals it’s interesting to have an option to
choose the best algorithm to take the best time-velocity diagram as showed in this work.
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