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INTRODUCTION

In all vented vessel propellant assessment methods the author has encountered, the
standard assumptions are a constant flame temperature (isothermal) throughout the burn
including depressurisation, and a negligible covolume. These assumptions produce signi-
ficant errors in determining both the propellant’s force constant and the overall system
performance. The level of error depends on the burn to depressurisation times.

In this paper the depressurisation of a vented vessel is predicted based on adiabatic
and then isothermal conditions. Both are derived initially for a true covolume and then
subsequently simplified assuming a negligible covolume. The different models are then
assessed.

Vented vessels are used to determine propellant performance in a safe and ope-
rationally correct environment compared to closed vessels. Propellant is burnt
within a chamber and the gases vented to atmosphere through a narrow throat.
Vented vessels can simulate the operation of energetic devices such as ejection
cartridges, rocket motors or base bleed systems. Computer modelling of
steady-state combustion is simple and for little loss in accuracy the system can
be regarded as burning at constant flame temperature. However the flame tem-
perature is generally assumed to remain constant during the depressurisation
phase from full combustion to atmospheric pressure. This paper shows that this
assumption introduces errors and gives a lumped parameter theoretical model
for Adiabatic Depressurisation. This predicts temperature and pressure with
time for the depressurisation of any vented vessel. The model is shown to be in
good agreement with trials.
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THEORETICAL DERIVATION OF THE MODELS

(All symbols are defined at the end of the paper) 

General Gas Equations

Starting with the Equation of State:

P(V – m η) = n R T (1)

But (adjusting for SI units):

n = (1000 m) / M (2)

Let:

RS = n R / m = l000 R / M (3)

then

P (V – m η)= m RS T (4)

Also let:

λ = RS T (5)

hence (4) becomes:

P (V – m η)=m λ (6)

Under initial conditions (5) becomes:

λO = RS TO (7)

Throughout this paper the ratio of specific heats (γ) is assumed to be constant. From
Reference [1] we define for supersonic choked flow, the Characteristic velocity (c) as:

c = – At P / (dm/dt) = (RS T)1/2 / (γ1/2 (2/(γ+l))(γ+l)/2(γ+l) ) (8)

where At is the effective gas throat exit area. Rearranging (5) and (8) gives:

c = ( ((γ+1)/2)(γ+l)/(γ+l)(λ/γ) )1/2 (9)

Hence:

λ = γc2 · ((2/(γ+1))(γ+1)/(γ–1) (10)

For unchoked flow we have from Reference [1], where Pa is the atmospheric pressure:

(dm/dt) λ1/2 / (At P) = – (2γ/(γ–1))1/2 (Pa/P)1/γ (1 – (Pa/P)(γ–1)/γ)1/2 (l l)

Rearranging and by defining function f~P), References [1, 2] give

(dm/dt) / (At P) = –λ–1/2 (2γ/(γ–l))l/2 ( (Pa/P)2/γ – (Pa/P)(γ+l)/γ)l/2

= – f(P) / c (12)
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Substituting for c from (9) into (12) gives for subsonic flow:

f(P) = ( ((γ+l)/2)(γ+l)/(γ–l) · (2/(γ–1)) · ( (Pa/P)2/γ (Pa/P)(γ+1)/γ) )1/2 (13)

and

(dm/dt) = – At P f(P) / c (14)

For supersonic flow (14) becomes:

(dm/dt) = – At P / c (15)

Equation (14) becomes (15) when f(P) = 1. Thus (14) can be used for general flows by
setting an appropriate value for the function f(P), as described in the next section.

Flow Correction Function, f(P)

Function f(P) in (13) can be thought
of as a correction factor for unchoked
restricted flow. This function is plotted
for various values of γ in Figure (1). Va-
lues of f(P) fall into three bands (a, b, c)
depending on the flow regime, itself de-
pendent on the ratio (Pa/P).

(a) When (Pa/P) is large, approxi-
mately 0.6 to 1.0, flow is subsonic and
follows equations (13, 14).

(b) When flow is sonic, (Pa/P) has a
critical value and f(P) = 1, following
equations (13, 14). Critical flow occurs
when function f(P) is at a maximum. 

Differentiating (13) gives: 

df(P)/d(Pa/P) = ((γ+1)/2)(γ+1)/2(γ–1) (2/(γ–1))1/2 ( (2/γ)(Pa/P)(2-γ)/γ –

((γ+1)/γ)(Pa/P)1/γ) / (2 · ( (Pa/P)2/γ – (Pa/P)(γ+1)/γ)l/2 ) (16)

If Pa is a constant, setting df(P)/d(Pa/P) to zero gives f(P) =1 and a critical value for P
defined as Pc (17), where:

Pa/Pc = (2/(γ+1))γ/(γ-1) (17)

(c) When (Pa/P) is small (0.0–0.5), flow is supersonic, the throat becomes choked,
with f(P) equal to 1, regardless of the smaller value of the function (see Figure 1). Flow is
therefore represented by equation (15).
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Hence for a general solution (Reference [2]), equation (13) becomes:

if P < Pc Subsonic flow
f(p) = ( ((γ+1)/2)(γ+1)/(γ–1) · (2/(γ–1)) · ( (Pa/P)2/γ – (Pa/P)(γ+1)/γ))1/2 (13a)

else if P = Pc Sonic flow

f(P) = 1 = ( ((γ+1)/2)(γ+1)/(γ–1) · (2/(γ–1)) · ( (Pa/P)2/γ – (Pa/P)(γ+1)γ) )1/2 (13b)

else P > Pc Supersonic flow

f(p) = 1 (13c)

Generally the vessel will be at a much greater pressure than atmospheric, so flow is
supersonic, following equation (13c). This can be assumed in subsequent equations.

Depressurisation of a Vented Vessel

Differentiating (4) with respect to time(t) and assuming V, η, RS, M and γ are con-
stants, gives:

V (dP/dt) = m RS (dT/dt) + RS T (dm/dt) + (dP/dt) m η + P η (dm/dt) (18)

Substituting from (14) into (18) gives the General Depressurisation Equation (19):

V (dP/dt) = m RS (dT/dt) – RS T At P f(P) / c + (dP/dt) m η – P2 η At f(P) / c (19) 

Assuming Adiabatic Conditions

From Reference [1] we have for Adiabatic conditions:

T = TO PO
(1–γ)/γ P(γ–1)γ (20)

Subscripts o refer to the initial conditions (i.e. pressure and temperature of the gas at
the commencement of vented vessel depressurisation). Differentiating (20) with respect
to time (t) gives:

(dT/dt) = TO PO
(1–γ)/γ ((γ–1)/γ) P–1/γ (dP/dt) = k1 P–1/γ(dP/dt) (21)

where k1 is defined as:

k1 = ((γ–1)/γ) TO PO(1–γ)/γ (22)

Let:

k2 = TO PO(1–γ)/γ (23)

then from (20) we have:

T = k2 P(1–γ)/γ (24)
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Substituting from (21, 24) for (dT/dt) and T into (19) gives:

V (dP/dt) = m RS k1 P–l/γ (dP/dt) – RS At f(P) k2 P(2γ–1)/γ / c + m η (dP/dt)
– P2 η At f(P)/c (25)

But from (5, 9):

1 / c = ( (2/(γ+1))(γ+1)/(γ–1) · (γ /(RS T)) )1/2 (26)

Let:

k3 = ( (2/(γ+1))(γ+1)/(γ–1) · (γ / RS) )1/2 (27)

then

c = Tl/2 / k3 (28)

Under initial conditions k3 is given by:

k3 = TO
1/2 / cO = T1/2 / c (29)

Substituting for T in (20, 28) gives:

1 / c = k3 TO
–1/2 PO

(γ–1)/(2γ) P(1–γ)/(2γ) (30)

or

1 / c = k4 P(1–γ)/(2γ) (31)

where

k4 = k3 TO
–1/2 PO

(γ–1)/(2γ) = PO
(γ–1)/(2γ) / cO (32)

Substituting for c from (31) in (25) gives:

V(dP/dt) = m RS k1 P–1/γ(dP/dt) – RS k2 P(2γ–1)/γAt f(P) k4 P(1–γ)/(2γ)

+ m η (dP/dt) – P2 η At f(P) k4 P(1–γ)/(2γ) (33)

Defining 

k5 = RS k2 k4 At (34)

and

k6 = η At k4 (35)

then: 

V (dP/dt) = m RS k1 P–1/γ (dP/dt) – k5 f(P) P(3γ–1)/(2γ) + m η (dP/dt)
– k6 f(P) P(3γ+1)(2γ) (36)

Rearranging equation (4) gives:

m = P V / (RS T + P η) (37)

Substituting (24) into (37) gives:

m = V/(k2 RS P–1/γ + η) (38)
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Substituting for m from (38) into (36) gives:

V (dP/dt) = (RS k1 V P–1/γ) / (k2 RS P–1/γ + η) · (dP/dt) – k5 P(3γ–1)/(2γ) f(P)
+ η (dP/dt) V / (k2 RS P–1/γ +η) – k6 f(P) P(3γ+1) (2γ) (39)

This gives equation (40) the Adiabatic Depressurisation Model

(dP/dt) = f(P) · (–k5 P(3γ–1)/(2γ) k6 P(3γ+1)/(2γ) ) /
(V – (RS k1 V) / (k2 RS + η P1/γ) – (V η) / (k2 RS P–1/γ+ η) ) (40)

In general the vessel will be at a much higher pressure than atmospheric, so f(P) = 1.
Equation (40) can be greatly simplified by setting the covolume to zero (η = 0, k6 = 0):

(dP/dt) = f(P) · (–k5 P(3γ–1)/(2γ) ) / (V – (k1 V) / (k2 ) ) (41)

Becoming:

(dP/dt) = f(P) · (– γk5 / V ) · P(3γ–1)/(2γ) (42)

Assuming Isothermal Conditions

From (19) if we assume a constant Flame Temperature for Isothermal Depressurisa-
tion then (dT/dt) = 0 and T = TO (the initial starting condition). From (28), c becomes cO
as in (29). Equation (19) then becomes:

V (dP/dt) = – RS T At P f(P) / c + (dP/dt) m η – P2 η At f(P) / c (43)

hence:

(dP/dt) ( V – m η ) = – RS TO At P f(P) / cO – P2 η At f(P) / cO (44)

Substituting from (7):

(dP/dt) = (PAt f(P) / cO) · (–λO – P η) / (V – m  η) (45)

From (6, 7) we have, at constant T:

P(V – m η) = m λ O (46)

Rearranging gives:

m = (PV) / (λO + P η) (47)

From (45) substituting for m (47) gives (48), the Isothermal Depressurisation Model

(dP/dt) = (PAt f(P) / cO) · (–λO – P η) / (V – (P V η) / (λO + P η) ) (48)

If the covolume is set to zero (η = 0), equation (48) becomes simply:

(dP/dt) = ( PAt f(P) / cO ) · ( –λO / V ) (49) 
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DISCUSSION

Figure 2 shows depressurisation predicted by the adiabatic model (with a true covo-
lume) and the standard isothermal model (with negligible covolume) together with a trial
firing of an ejection cartridge containing 13 g of double based propellant. It shows that a
significant error in depressurisation rate and pressure integral is generated by the isother-
mal assumptions. This pressure integral is often used in determining the propellant’s force
constant. Table 1 emphasises the difference between the models.

Table 1. Comparison of Models

To avoid errors it is recommended
that pressure integrals are used for
system performance modelling rather
than derived force constants, unless
the standard isothermal models used
have been replaced by adiabatic ones.

Figure 2. Depressurisation with Time.

NOMENCLATURE
At Effective gas throat exit area (m2) P Gas pressure at any instant during
c Characteristic velocity (m/s) depressurisation (Pa)
cO Initial characteristic velocity (m/s) Pa Atmospheric pressure (Pa)
η Gas covolume (m3/kg) Pc Critical gas pressure at which flow
f(P)Correction factor for unchoked gas is sonic (Pa)

flow; for choked flow f(P)=1 PO Initial gas pressure (Pa)
γ Ratio of specific heats R Universal gas constant (J/mol/K)
kn System constants, k1 – k6 as defined RS Modified gas constant (J/kg/K)

above t Time(s)
λ Force constant (J/kg) T Gas temperature at any instant
λO Initial force constant (J/kg) during depressurisation (K)
m Mass of gas (kg) TO Initial gas temperature (K)
M Gas molecular weight (g/mol) V Volume of vessel (m3)
n Moles of gas (mol)
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