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INTRODUCTION

Fragmentation is the main reason why spall linings are required in AFV, so this paper
is concerned with secondary projectiles of approximately 500 to 700 m/s. Another aspect
is the structural integrity of the material that is essential for the AFV as delaminations are
an inevitable consequence of impact damage. Forms of failure include matrix and shear
cracking, delamination, fibre fracture and surface damage. In 1991 Cantwell and Morton
[1] investigated low velocity impacts on different carbon fibre reinforced plastic (CFRP)
arrangements and established the material behaviour after impact damage.

In the UK, DERA have developed an AFV that uses a composite hull, replacing the
aluminum and steel materials. The advantages are that the AFV is lightweight thus im-
proving performance and ballistic properties are increased. In addition, survivability is
increased as the vehicle is made from one component so there are fewer weak points and
corrosion by salt water and wet environments is eliminated. In applications such as this,
the composite panels are required to support some or all of the vehicles structural loads. 

Composite materials used as a spall lining in armoured fighting vehicles (AFV)
must have good ballistic qualities as well as structural characteristics that can
withstand applied loads, before and after impact. This paper investigates whe-
ther there is a relationship between ballistic and mechanical properties of glass
fibre reinforced plastic material. Impact damage on the composite panels was
caused by ballistic and drop-tower tests using .30 calibre fragments at 500 to
700 m/s and a Rosand machine at 50 J impact respectively. An ultrasonic C-scan
determined the subsequent delamination size, which was expected to be inver-
sely proportional to the Mode 1 experiments determining the delamination resis-
tance (G1C). The results showed a slight relationship between three composite
panels, where reduction in G1C followed an increase in ballistic properties.
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MATERIALS

The composite panels all contained the same woven E glass fibre plies, but with diffe-
rent matrix materials. SC1008 phenolic resin was used in four samples and epoxy resin
was used in the fifth. The phenolic resin samples were modified by the addition of PVB as
a flexible agent, which is the rubbery substance in the material, or amino siliane to pro-
mote the matrix bonding. 

No. Composition
1 SC1008 phenolic resin with PVB 50:50
2 SC1008 with 10% PVB
3 Epoxy mix 57
4 SC1008 phenolic resin
5 SC1008 with amino silane

Sun and Rechack [2] placed extra resin in the interfaces and discovered that although
this reduced the occurrence of delaminations, due to reduced shear stresses within the la-
minate, the compressive strength was decreased.

EXPERIMENTAL PROCEDURE

Ballistic tests used .30 calibre fragments simulating projectiles (FSP) [3] at a range of
10 m. Projectile velocity was measured using two LED photodetectors at 6 m and 14 m
from the gun. The experiment worked at a compromise between the RARDE 802 [4] and
NATO [5] standards. A set of velocity values were produced within a 30 m/s range
(RARDE 802) and consisting of 3 penetrated values and 3 held values (NATO). Using
these figures, the V50 was determined for each sample. 

A Rosand Instrumented Falling Weight impact test with an impactor of 25 mm diame-
ter and mass 2.484 kg was utilised to hit 210 mm x 160 mm sized panels. The aim was to
reach impact energy of 50 J. Zhou and Davies [6] of Imperial College had used ultrasonic
C scan to determine delamination area and crack propagation and it proved to be very use-
ful. Hence, the delamination area and crack front of these impact samples were determi-
ned with an ultrasonic C scan employing a 2.25 MHz submersion probe. 

As structural behaviour after impact was an issue, compression after impact (CAI)
tests were performed using a Denison compression rig where maximum load endurance is
3000 kN.
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Figure 1: CAI Test Apparatus.

As Cantwell and Morton [1] discovered delaminations were one of the primary dam-
age failure modes after impact, double cantilever beam (DCB) mode 1 delamination resi-
stance tests were carried out adopting the experimental compliance method. Composite
strips of 250 mm x 25 mm x 12 mm were marked at 5 mm intervals and load blocks were
glued to the sides. This apparatus is shown in Figure 2. 

Figure 2: Mode 1 Delamination.
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A PolyTetraFluoroEthylene (PTFE) starter film inserted during manufacture was used
to provide crack initiation. With the Instron machine, load (P) vs. displacement (δ) was
achieved (see Figure 3) and the load at each 5 mm crack propagation interval was recor-
ded. Compliance (C) was then determined by equation 1.

(1)

This is used to plot log C vs. log (delamination length, a). The gradient of this graph
(n) is an element in equation 2 for determining G1C.

(2)

Where F is the large displacement correction:

(3)

[B = width of specimen, 25 mm. l1 = distance from centre of loading pin to midline of
composite strip, 16 mm]

G1C can then be plotted as seen in Figure 4 and its value can be taken by reading the
average value of the plateau.

Figure 3: Load vs Displacement. Figure 4: G1C Results Presentation.
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RESULTS

The results of the five tests that were carried out are shown in table 1.

Table 1: Results of the Five Test Procedures

From visual inspection, the front face of the ballistic panels displayed a smaller deta-
ched area than the corresponding back face detachment. In all cases, the delaminated pe-
rimeter spreads out from the central impact point and surface cracking was seen near the
vicinity of all the projectile entrances. The front face of the ballistic panels showed “tufts”
of fibre protruding away from the projectiles point of entry. Similarly, these were also
located where the projectile had exited. Back face observations showed that the smallest
and most localised detachment areas were from the epoxy panel whilst emerging adjacent
delaminations occurred in all the phenolic matrix samples. When the detached areas on
the back face of the phenolic resin and the resin with 10% PVB panels were gently
depressed, these areas sprang back to a greater extent than similar areas on the other pa-
nels. 

Figure 5: Front Face of Epoxy Figure 6: Back Face of Epoxy
Ballistic Panel. Ballistic Panel.
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Material V50 (m/s) C-Scan Delamination
Area (mm2)

CAI – Max
Load (kN)

Mode 1 – G1C

(J/m2)
Phenolic resin+PVB 50:50     581.3 545 146.9 4124.95
Phenolic resin+10% PVB 670.9 2817 206.2 404.30

Epoxy mix 57 651.2 215.5 409.8 229.09
Phenolic resin 601.2 1483.5 96.2 761.66

Phenolic resin+Amino Silane 589.6 2408.5 254.2 58.87



Due to glass being an attenuating material, delamination detection on glass fibre rein-
forced plastic (GFRP) composites using the C scan gave quite an indistinct image, as
there was very little signal reflected back to the receiver. This was especially evident in
the phenolic resin and resin with amino silane specimens hence the results are only appro-
ximations.

During the CAI tests, cracking sounds due to fibre breakage were heard, except in the
phenolic resin sample where complete fracture followed only a few fibre breakages. All
the failures were situated at the centerline of the composite panel (perpendicular to the
line of force) and through the impact point.

When following the progress of the crack in the DCB mode 1 experiments, the crack
tended to propagate through two to four fiducial lines concurrently, but other than this, the
advancements were quite steady.

DISCUSSION

Figure 7: Comparing G1C and V50 Results.

Figure 8: Comparing Delamination Area and Maximum CAI Load.
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Figures 7 and 8 shows the trend of the results. It was predicted that the delamination
resistance test data would be approximately proportional to the CAI test and inversely
proportional to the C scan results. Unfortunately, the data does not show such a trend. Ho-
wever, there is a slight inverse relationship between the ballistic properties and the resi-
stance to delamination. Also, Figure 8 illustrates that as delamination area increases, the
CAI maximum load reduces. 

Griffin [7] conducted experiments where five different reinforcements were set in the
same matrix and impacted. The maximum energy that these plates could absorb was the
same, therefore showing the damage initiation is governed by the matrix properties and
that the fibre properties are virtually unrelated in this aspect. This was also confirmed
from analysis by Strait [8]. Considering this, the epoxy sample was expected to have a re-
latively high ballistic limit, as it is a very tough material. This is also why it performed
very well under high compressive stresses.

Taking into account the comparable panels: phenolic resin with 50:50 PVB, phenolic
resin with 10% PVB and the phenolic resin samples, there was a slight inverse relation-
ship between delamination resistance and ballistic properties. The fracture toughness of
the resin with 50:50 PVB was high but only performed reasonably in the CAI test and was
the worst with respect to the ballistic data. Therefore, in this case, it is not the optimal
choice for use as an AFV spall liner. 

The resin with 10% PVB specimen had good ballistic properties and although the
overall mechanical characteristics were only mediocre, it is sufficient for the application.
In addition, this material achieved the largest delamination area of 2817 mm2, which
coincides with its relatively low G1C result, as they are expected to vary inversely.

At 601.2 m/s, the V50 of the phenolic resin itself was average and the delamination
resistance test gave relatively high G1C from the materials investigated in this project.
However, the compressive strength was low compared with the other composites.

While the epoxy sample would seem like a very good possibility for a spall liner, it is
unfortunately more flammable than the phenolic resin samples. Therefore, the choice of a
suitable spall lining would predominately lie with the resin with amino silane and the re-
sin with 10% PVB specimens. Although the ballistic properties of the resin with amino si-
lane are relatively low, they are sufficient and the mechanical characteristics are good.
The other possibility being the resin with 10% PVB sample, which has better ballistic
qualities, however the CAI results are slightly lower.   

CONCLUSION

The development of composite hull vehicles has highlighted the need for both structu-
ral and ballistic properties in composite armour materials as they are equally as important.
Thus, the aim was to investigate if there is a relationship between these two aspects.

This investigation did not confirm past research on the impact damage of composite
materials. This was due to the predictions of G1C being proportional to the CAI test and
inversely proportional to the C scan results, which were not apparent in these results.
However, there was an approximate inverse relationship between the G1C and V50 results
and between the C scan and CAI data.
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The material with the best V50 ballistic properties was the phenolic resin with 10%
PVB. The material with the best overall mechanical properties was the epoxy panel as it
had the highest CAI load of 409.8 kN.

This investigation found that the materials with the best structural and ballistic proper-
ties were the phenolic resin with amino silane and phenolic resin with 10% PVB speci-
mens. These would be the most suitable materials for an AFV spall lining.
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