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INTRODUCTION

Recent work on yawed penetration of tungsten alloy projectiles into armor steel has
provided a last piece of information needed for the nearly complete characterization of
the penetration of tungsten rods into steel at various impact velocities, projectile aspect
ratio (projectile length-to-diameter ratio, L/D), and impact inclination (total yaw). This al-
lows an exploration of the penetration regimes, which provides greater insight into the
role various parameters play in the penetration process. This paper describes the results of
an analytical study of penetration and presents graphs showing the influence of the va-
rious variables. The results are applicable to semi-infinite targets at zero degrees obli-
quity, over the ordnance velocity regime (0.75 ≤ V ≤ 1.9 km/s). With this knowledge, ar-
mor designers and engineers have an understanding of the level of performance an armor
design might be expected to achieve.

THE MODEL

Data for the penetration of tungsten alloy projectiles into armor steel were used for the
analysis. Such data include the influence of length-to-diameter ratio, and impact inclina-
tion on penetration. These data were fit with equations and combined with a few assump-
tions on penetration behavior to make penetration predictions for a wide range of impact
velocity, L/D, and impact inclination.

Recent work in the yaw behavior of penetration (Hohler and Behner, 1999) has
allowed the creation of rather general curves for the penetration of tungsten al-
loy projectiles into armor steel targets. Simple analytical expressions are com-
bined to produce families of penetration curves that include the effects of im-
pact velocity, projectile length-to-diameter (L/D) ratio (Anderson, et al., 1995),
crater diameter, and impact inclination (yaw).
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Velocity and L/D Effect

Penetration efficiency is affected by impact velocity V and the L/D ratio of the projec-
tile. In the ordnance velocity regime (0.75 ≤ V ≤ 1.9 km/s), penetration is remarkably li-
near with impact velocity, e.g., see Ref. [1].

The geometric aspect ratio of the projectile also has a relatively strong effect on pene-
tration efficiency. The smaller the L/D ratio, the larger the penetration P, as normalized by
original projectile length L. Thus, smaller L/D projectiles have a higher penetration effi-
ciency as measured by P/L, although in terms of absolute length, the larger L, the deeper
the penetration. The fit to data for V and L/D used in this analysis is from Anderson, et al.
[2]. The equation for penetration as a function of L/D and impact velocity, for tungsten al-
loy projectiles impacting rolled homogeneous armor (RHA) at velocities between appro-
ximately 0.750 km/s and 1.9 km/s is1:

(1)

where V is in km/s. Fits to experimental data are used since analytic models showing an
L/D effect do not predict as pronounced effect as seen experimentally. Figure 1 shows
curves from Eq. (1) compared to experimental data and numerical simulations. The
dashed lines are regression fits at each impact velocity, and the dotted lines are from Eq. (1).

Figure 1. Penetration versus L/D for tungsten projectiles into RHA at three impact veloci-
ties (from Ref. [2]; references in figure refer to citations in Ref. [2]).
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1 P/L vs. V is highly linear between 1.2–1.8 km/s, and reasonably linear from 0.75–1.9 km/s. We have elected
to extended slightly the linear region of applicability in the spirit of the approximations and the overall de-
gree of accuracy of the equations.



Yaw

Yaw degrades penetration because the yawed projectile interacts with the penetration
channel (the crater wall) rather than just penetrating at the bottom of the crater. The yaw
angle at which the projectile tail just begins to contact the side of the penetration channel,
i.e., the theoretical onset of degradation, is referred to as the critical yaw angle γcrit, and it
is calculated by examining the penetration geometry where the tail of the projectile just
touches the crater wall:

(2)

The critical yaw angle depends on the crater radius Rc and the projectile length and ra-
dius, Rc and L, respectively. Often the literature defines the critical yaw angle as

(3)

This is an approximation that (as indicated) holds for larger L/D rods. In the follow-
ing, the fully nonlinear definition will be used since projectiles of low L/D are also con-
sidered in the analysis. The critical yaw is used as a scaling angle for fitting yawed data
for differing L/D projectiles. 

Crater Diameter

To calculate the critical yaw, it is necessary to determine the diameter of the crater. To
date there is not a good analytic model of crater diameter, so once again fits to experimen-
tal data are used. In particular, three fits in the literature to crater diameter of tungsten al-
loy projectiles into steel targets are: 

(4)

where V is the impact velocity in km/s. The first two equations are from Walker and An-
derson [3], and are shown in Fig. 2. The third equation is due to Bjerke, et al. [4], and is
shown in Fig. 3. All three provide good fits to the respective crater radius data for tung-
sten alloy penetrations into steel. For a velocity of 1.6 km/s, for example, the respective
values of the ratio of the crater radius to projectile radius are Rc/Rp = 2.12, 1.83, and 2.02.
Although these values are slightly different, they are within approximately 7% of the
mean; which is typical of the accuracy of the other approximations. An average value of
2.0 for this ratio was used in the curves to be presented later.
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Figure 2. Ratio of crater radius to projectile radius for various impact conditions, from
Ref. [3].

Figure 3. Ratio of crater radius to projectile radius for tungsten into steel, from Ref. [4].

Yaw Data

With an expression for the crater radius and critical angle, it is now possible to exa-
mine yaw data for a specific L/D, and then extend the results to other L/D’s. In particular,
a fit to data has been given by Hohler and Behner [5], for L/D = 20 tungsten alloy projec-
tiles fired into steel targets at 1.65 km/s. The fit to their data is:

(5)
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where the equation has been modified to scale with the critical angle. (Their original
equation had 1+0.0045γ2 in the denominator with γ in degrees, but has been modified
here to allow for different L/D’s and different impact velocities by assuming that γcrit is an
appropriate scaling parameter.) In Eq. (5), P0 is the depth of penetration for normal inci-
dence (zero yaw) and P* is the number that allows the equation to produce the L/D= 1 pe-
netration when the yaw is fully 90°. (P* should rather be the value that produces the pene-
tration for the rod impacting sideways. However, the L/D= 1 penetration value provides a
good approximation, and there are usually L/D= 1 data available to determine P*, where-
as side-on impact data for projectiles are pretty much the result of luck – usually, bad
luck.) Figure 4 shows the fit compared to the Hohler and Behner data, where penetration
is normalized by zero-yaw penetration.

Figure 4. Penetration data and equation fit for tungsten into steel at 1.65 km/s. The as-
sumed ratio of crater radius to projectile radius is 2.0.

Since these data are for a specific case, it is desirable to verify the applicability of Eq.
(5) against a second set of data under different impact conditions. Figure 5 shows data
from Yaziv, et al. [6], for a L/D 10 tungsten alloy projectile impacting a steel target at 
1.4 km/s. Here, the assumed ratio of the crater radius to projectile radius is 1.8. Agree-
ment is good. Finally, Fig. 6 shows both sets of data plotted on the same graph, where the
horizontal axis is the yaw angle scaled by the critical yaw angle.
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Figure 5. Data and fit for L/D=10 tungsten rods into steel targets at 1.4 km/s.

Figure 6. Normalized penetration (by zero yaw penetration) versus yaw scaled by critical
yaw for the data for L/D=10 and L/D=20 tungsten alloy projectiles impact steel targets.

PUTTING EVERYTHING TOGETHER

Now that all the pieces are in place it is possible to calculate the depth of penetration
into RHA steel as a function of V, L/D, and yaw. The depth of penetration normalized by
projectile diameter versus L/D for impact of tungsten alloy projectiles into armor steel
(with an assumed Rc/Rp = 2.0) is shown in Fig. 7 for various impact yaw angles, at an im-
pact velocity of 1.6 km/s. The concave down nature of the zero yaw curve is due to the
L/D effect. The effect of yaw on the depth of penetration is large: for an L/D = 10 rod,
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each additional 10° of yaw results in nearly a 20% decrease in penetration; while for an
L/D= 30 rod, each additional 10° of yaw reduces penetration by another factor of 2. Fi-
gure 8 shows the same results in a different way, this time plotting the normalized depth
of penetration versus impact yaw for a variety of L/D’s.

Figure 7. Penetration normalized by projectile diameters versus L/D for a number of im-
pact yaw angles (in degrees): V= 1.6 km/s.

CONCLUSION

A series of analytical expressions have been combined that predict the penetration of
tungsten alloy projectiles into armor steel as a function if impact velocity, projectile
aspect ratio (L/D), and impact inclination (yaw). These expressions have been used to
predict depth of penetration, normalized by projectile diameter, as a function of L/D for
various impact yaw angles. Alternatively, P/D has been plotted as a function of impact
yaw versus various L/D’s. 
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Figure 8. Penetration normalized by projectile diameters as a function of yaw for various
L/D’s: V = 1.6 km/s.
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