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INTRODUCTION

Ceramic faced configurations are increasingly considered for armor applications
where weight efficiency is the major constraint. Wilkins presented experimental data to
determine the best ratio of ceramic tile to back-up substrate thickness, against armor
piercing (AP) projectiles [1,2]. The performance of ceramic faced armor can be enhanced
by optimizing the laminated ceramic-tile/substrate configurations [3–6].

The purpose of the present study is to investigate the influence of spaced ceramic con-
figurations on their ability to defeat small AP projectiles. The ballistic performance of the
spaced system is compared with the performance of a single (non-spaced) ceramic ele-
ment having an equivalent arial density.

The rationale for this study is based on the observation that the maximum resistance of
a ceramic material to penetration occurs at the early phase of the penetration process. At
this stage, much of the ceramic tile is still intact, before it undergoes fracture. This pheno-
menon has been observed both for thin ceramic faced targets against small AP projectiles
[1], and for thick ceramic targets against long rod penetrators [7–9]. It may be explained
by the projectile dwell at the surface of the ceramic [10]. It is not clear whether a spaced
system has a longer total dwell phase compared to an equivalent single element system.

Experimental and computational work was conducted to study the effect of ce-
ramic spaced targets on the performance of AP projectiles. The base-line target
is a single element system consisting of alumna/aluminum laminates. The
ballistic performance of this target is compared with the performance of a
spaced system having an equivalent arial density. The experimental results are
discussed and compared with results of simulations. For the experimental eva-
luation of target performance we used the Depth-of-penetration (DOP) tech-
nique. For the computational investigation we represented the failed ceramic
by the Mohr-Coulomb model and used the Euler processor of the 2D AUTO-
DYN hydrocode.
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EXPERIMENTS

In a series of experiments, 7.62 mm AP M2 projectiles were fired at alumina tiles
backed by aluminum substrates at, or around, the standard muzzle velocity (840–850 m/s).
The single element system consists of a 9.2 mm thick Al2O3 tile, backed by a 6.6 mm
thick aluminum substrate. The spaced system consists of two 4.6 mm thick Al2O3 tiles,
each backed by a 3.1 mm thick aluminum substrate. The two elements are separated by a
82 mm space (three core lengths). See Fig. 1.

All Al2O3 tiles are 2" x 2" wide, and all aluminum substrates are 8" x 8" wide. The
Al2O3 tiles are Al98 from Rami Ceramics, Israel. Their properties are: Density = 3.80
g/cm3, Bending Strength = 320 Mpa, Hardness = 1389 kg/mm2, Sound Speed = 10,200
m/s. The aluminum plates are Al6061-T6.

In order to evaluate the ballistic performance of the targets we applied the depth-of-
penetration (DOP) technique, which was first introduced in [3,4]. The residual DOP va-
lues were measured in an aluminum Al 6061-T6 block mounted 2" behind the target.
From the results, the mass efficiency (Em) of the targets is calculated. Em is defined as the
arial density of the total penetrated part of the target, relative to the arial density of the
base line penetration in an all aluminum target. The base line penetration versus impact
velocity curve was experimentally determined in order to eliminate variations in impact
velocity (around the muzzle velocity).

Digital Imaging 468 Imacon camera recorded the impact and penetration events, but
the ceramic debris behind the targets covered the residual cores. Therefore, in two tests
the residual cores were recovered in a soft catcher mounted behind the target (instead of
DOP blocks).
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                9.2 mm Al2O3 / 6.6 mm Al              4.6 mm Al2O3/ 3.1 mm Al              Same

                  A                                                                B

                                                                                                                       82 mm space

FIGURE 1: Test Configurations:  A = Single Element target, B = spaced target.



TEST RESULTS

The tests and their results are given in Table 1.

From the test results the following conclusions may be drawn:
– The ballistic performance of a single element system (configuration A) is higher than

that of a spaced system having the same arial density (configuration B).
– Two elements of the Al2O3 spaced system break the core but one element of the

spaced system does not break the core.

SIMULATIONS

Before running simulations for the targets used in the tests, it is desirable to calibrate
the simulations for a simple aluminum plate target. For this purpose we use data obtained
by one of us (D. Yaziv) with a blunt (backward moving) AP M2 projectile perforating a
6.6 mm 6061-T6 aluminum plate. For our simulations we use the Euler processor of
AUTODYN2D version 4. In Fig. 2 we sum up the results from these simulations, and
compare them with the test data. We see that, in view of the scatter and uncertainties in
both tests and simulations, agreement is good. In subsequent simulations we use Y=0.4
GPa for 6061-T6 aluminum, as this value gave the best agreement.

Figure 2. VsVr plot of a blunt APprojectile perforating a 6.6 mm 6061-T6 aluminum target.
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Table 1. Experimental data and results
Recovered
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EmAverage

DOP
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DOP
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Next we conduct an extensive computational investigation on the performance of a spa-
ced target compared to a non-spaced target of the same thickness. As before, we use
AUTODYN2D/Euler. We report results relating to the following cases:
– Depth of penetration (DOP) of blunt and pointed projectile cores into 6061-T6 alumi-

num witness plates.
– Performance of spaced aluminum targets against flat projectile cores.
– Performance of spaced ceramic/substrate targets against blunt projectile cores, com-

pared to non-spaced targets of the same thickness.

DOP Tests of Blunt and Pointed Projectile Cores into Aluminum Targets

The reason for addressing this case before running the main simulations is to check
whether, what we obtain agrees with test data that we have. We ran simulations for a
pointed high hardness steel projectile representing the AP M2 core. According to our ex-
perience, running simulations for the core would represent quite well the performance of
a jacketed projectile. Running for Vs=600 m/s we obtained DOP = 16.5 mm, which is
much lower than the data (28 mm). We tried lower values of strength for the aluminum
and got the results summarized in Table 2.

We see that to get realistic DOP values into witness blocks, we need to use Y≈0.2 GPa
for thin 6061-T6 aluminum plates. 

In Fig. 3 we show DOP results from runs with blunt and pointed projectiles into alu-
minum blocks with Y=0.2Gpa.

Figure 3. DOP for blunt and pointed projectiles, representing the AP M2 projectile core,
into 6061-T6 aluminum, with Y=0.2GPa.
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Table 2. DOP for different aluminum strength values.
Y GPa DOP mm
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Performance of Spaced Aluminum Targets against Blunt Projectile Cores

Having generated DOP(V) curves, we proceed to compute VsVr curves for spaced
aluminum targets. Using our DOP(V) curves we can express the residual velocity Vr in
terms of DOP into a witness block. Our goal is to evaluate computationally the perfor-
mance of spaced ceramic/substrate targets. But for comparison, we evaluate also the per-
formance of spaced aluminum targets. This will help us later to eliminate possible expla-
nations of the behavior of the ceramic targets.

In Fig. 4 we show the results of our computations in a VsVr plot. We see three curves:
blunt projectile perforating a 6.6 mm aluminum plate; same, but with a 3.3 mm plate;
same projectile, but with two spaced 3.3 mm plates.

Figure 4. VsVr Plot for blunt projectile cores against 3.3, 6.6 and spaced 2x3.3 mm alu-
minum plates.

We see that the three curves have similar shapes, and that the performance of the
spaced target (2x3.3 mm) is somewhat lower than that of the 6.6 mm target. Above
Vs=300 m/s, the difference in Vr is about 40 m/s.

One can try to deduce the performance of the spaced target from that of the 3.3 mm
target, assuming that Vr behind the first plate is Vs for the second plate. Doing this for
Vs=400 m/s we get Vr=290 m/s. This is higher than Vr for a 6.6 mm plate (265 m/s), in
disagreement with the direct simulations. The cause for this discrepancy is that in the si-
mulations, the projectile pushes a plug out of the first plate. This plug is somewhat wider
than the projectile and is less effective than the bare projectile in perforating the second
plate. This plug effect should be considered when transforming a residual velocity to
DOP into a witness block. 

Performance of Spaced Ceramic/Substrate Targets against Blunt Projectile Cores

The ceramic in the tests is 3.80 gr/cc alumina. We represent the strength of failed cera-
mic by a Mohr-Coulomb model. We assume that during the penetration process the cera-
mic has already failed, and ignore the transition phase from intact to failed states. After
some trials we chose to use the following Mohr-Coulomb relation: Y=0 for P≤0; Y=P for
0<P≤1GPa; Y=1GPa for P>1GPa.
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In Fig. 5 we show VsVr results for the blunt projectile core perforating the following
three targets: thick ceramic/substrate (9.2/6.6 mm), thin ceramic/substrate (4.6/3.3 mm),
and two spaced thin ceramic/substrate targets (2x4.6/3.3 mm). We see from Fig. 5 that the
spaced target has a significant disadvantage compared with the non-spaced target of the
same thickness. This is in agreement with the tests.

Figure 5. Computed results for a blunt projectile perforating ceramic/substrate targets.

We should emphasize that the spaced target effect occurs in the simulations without
any recourse to sophisticated damage models. Assuming the ceramic to be damaged, the
effect is purely hydrodynamic. In Fig. 5 we also show, as in Fig. 4, prediction of the
spaced target performance using the VsVr plot for the thin target. Comparing Figs. 4 and
5, it seems that the spaced target effect depends on the overall thickness of the target.
VsVr plots of a thick target and of a target half that thickness would be far apart, and we
would get a large spaced target effect. To show that, we conducted runs with blunt projec-
tiles perforating thicker aluminum plates as follows: A 6.6 mm plate (from Fig. 3), a 13.2
mm plate, and two spaced 6.6 mm plates. We show the results in Fig. 6. We see that this
time the spaced target curve is above the non-spaced thick (13.2 mm) target curve,
although not by much.

SUMMARY

We conducted AUTODYN2D/Euler computer simulations to investigate the spaced
target effect observed in our tests namely, that a spaced ceramic/substrate target
(2x(4.6/3.3 mm)) has a significant disadvantage to perforation by a blunt projectile core,
compared with a non-spaced (9.2/6.6 mm) target. After some calibration runs we perfor-
med 4 sets of computations, summarized in Figs. 3 to 6.
Our conclusions are:
– The spaced target effect is a hydrodynamic effect and may occur for all kinds of tar-

gets.
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– The space target effect may be observed for relatively thick targets, when the VsVr
curves for thick and half thickness targets are significantly apart.

– For aluminum plates a plug effect, that tends to offset the spaced target effect, occurs
in the simulations.

– The plug effect for ceramic/substrate targets is quite small so that the spaced target ef-
fect for them is more pronounced.

Figure 6. Computed results for a blunt projectile perforating 6.6,13.2 and 2x6.6 mm alu-
minum targets.
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