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A PARAMETER THAT COMBINES THE EFFECTS OF BEND
AND ANGLE OF ATTACK ON PENETRATION DEGRADATION
OF LONG RODS

Joaquin M. Campos, William Reinecke, and Stephan Bless

Ingtitute for Advanced Technology, The University of Texasat Austin, 3925 W. Braker Ln.,
Suite 400, Austin, Texas 78759-5316

Very slender rods have been shown to have desirable properties when attacking
armor at hypervelocity. Experiments with rods having fineness ratios approa-
ching 50 have been reported [1, 2]. But such rods also have weaknesses: they
inherently have small critical angles of attack and tend to bend in flight more
than conventional slender rods[3]. Both of these propertiestend to decrease the
penetration of very slender rods. This study was undertaken to elucidate and
quantify the combined effects of bending and angle of attack in reducing the
penetration of slender rods. A volumetric interference parameter “q” will bein-
troduced as a geometric method to associate a yawed or bent and yawed pene-
trator with its penetration performance. This method isindependent of velocity,
or penetrator material type so long asit is a constant cross-section monolith. A
validation will be conducted to show its effectiveness as a performance cha
racterization tool.

METHOD DESCRIPTION

The entirety of this method is based on the principle that volumetric interference of
the penetrator with the crater walls during penetration will degrade terminal performance.
There are two assumptions that are made in this approach. Thefirst assumption isthat the
projectileis assumed to have little or no angular rate at impact compared to the time scale
of the penetration event, and secondly that there is no deformation during initial penetra-
tion. Better said, we assume that the angular and bending rates are small enough that the
penetrator’s angle of attack and bend does not change significantly during the penetration
event.
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FIGURE 1. Defining geometric boundaries.

In order to relate the volumes of the penetrator and the crater it is necessary to describe
the projectile in three-dimensional space an instant before impact. This approach required
that the crater diameter (H) initiated by the nose of the penetrator be calculated as given
by the empirical relation derived by Silsby et al [4]. The crater diameter (crater wall) is
used as ageometric boundary from which interference between it and the penetrator is de-
termined. The nose, or the crater-initiating element of the projectile, will be called the
principle point.

To analyze the fit of the projectile through the impact crater, we considered the fit of
the projectile within a tube whose forward end is centered on the principle point, and
whose axisis parallel to the rod velocity vector. The tube diameter isthe crater diameter,
H. Thistube or cylinder provides ageometric limit to judge projectile-crater interference,
and any part of the projectile’s body that protrudes out of the boundary cylinder will be
judged as a degraded element. A figure of merit g, was derived by taking the projected
length of the penetrator with respect to its velocity vector and dividing it by the length de-
rived from the sum of the volumes of the interfering elements, those lying outside of the
crater diameter H. g isgivenin equation form as:

q:

I

C ®

proj.

wherel L and L proj. are described asin Fig 2.
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Lproj.

I
Figure 2. Defining g.

Thelength I isdefined asthetotal interference volume divided by the cross-sectional
area of the penetrator and iswritten as:

=" )

where V; isthe total interference volume between the penetrator and the crater. L proj. is
defined as the projected length of the penetrator with respect to its velocity vector, and is
measured from the center of the furthest up-range penetrator edge to the center of the fur-
thest down-range edge parallel to shot line.

APPLICATION

The application of this method requires that pre-impact conditions are known well
enough to plot a chosen set of points along the penetrator’s centerlinein 3-D space. A 3-D
(solid) modeling program should then be used to plot the points. The penetrator body is
then drawn, approximated with a series of segments of the correct penetrator cross-sec-
tion extruded between the plotted points. The H cylinder is then constructed around the
penetrator with solid corresponding to target material (i.e. athick walled tube with the pe-
netrator inside). The interference can then be determined between the penetrator and the
cylinder by using an interference calculating routine that is available with most solid mo-
delers. The value of q isthen calculated as shown earlier. The penetration for g = 0 isde-
noted as pn, Thisisthe ‘normal’ penetration of arod with perfect impact conditions. Pre-
sumably the degraded penetration p/pn, is a function of g. Once the functional form of
p/pn isknown for areference penetrator and target, the relative sensitivity of other targets
and penetrators can be evaluated.

The technique could also be used as a predictive value of the performance of a bent
and yawed projectile into atarget with unknown performance, as long as the rod had pre-
viously been characterized with g into a known target. This then can be used to evaluate
and compare aknown target with an unknown target.

1299



Terminal Ballistics

Thus this technique gives a method of correlating a non-dimensional parameter to de-
gradation in penetration performance and can be used to get acomparison of sensitivity to
g. Penetrator and target performance can now be evaluated even when atest goes “bad”
and the angle of attack or bend isexcessive.

VALIDATION

A case study was performed to show that afeasible correlation between q and penetra-
tion performance could be attained. The study’s results show atrend of q with respect to
penetration performance of a high L/D (42) right circular cylinder penetrator. The pene-
trators used for these tests were right circular cylinders made of A.O.T. tungsten, and the
targets were normal RHA. All the penetrators were the same diameter but differing L/D’s
(see Table 1 below). The penetrators were shot at vel ocities between 2.1 and 2.2 km/s. All
shots had some pitch and yaw, and in addition, some were bent. The Lanz-Odermatt pene-
tration function [5] is used to predict normal penetration. Preliminary validation of g was
done by graphing p/pn vs. g. With the data set acquired, these graphs should show that
thereis areasonable correlation for g with penetration performance. A graph of normali-
zed angle of attack p/pn vs. Y/\e, where yc is critical total angle of attack and p isthe un-
degraded normal penetration, will be used as a comparison to p/pn vs. g in order to see
which correlation ismore descriptive.

RESULTS

Data for the validation study isin Table 1 below. Values of q were attained using the
method described above with the assistance of AutoCAD Mechanical Desktop for the so-
lid modeling and interference volume calculations. The data for g and p/pn
[=(PIL)/(PIL)q] areplottedin Fig. 3.
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Tablel

Shot [L/D [V (m/s) yc |yiyc|Bend| q |(PL)o| PIL | (PL)/(PIL),
387 | 45 | 2180 | 0.28 | 0.96|0.29 0.007( 1.30 | 0.95 0.73
392 | 42 | 2210 | 2.96 | 1.05|2.81 0.558( 1.31 | 0.80 0.61
393 | 42 | 2210 | 1.60 | 1.05|1.52 0.157( 1.31 | 0.83 0.63
398 | 42 | 2210 | 4.31 | 1.05|4.09 0.686( 1.31 | 0.51 0.39
409 | 42 | 2180 | 3.75|1.03|3.64 0.640( 1.30 | 0.62 0.48

417 | 42 | 2200 | 2.64 | 1.04]|2.55 0.563| 1.31 | 0.72 0.55
420 | 40 | 2200 | 1.50 | 1.08|1.39 0.142| 1.31 | 0.97 0.74
429 | 40 | 2210 | 0.48 | 1.08|0.44 0.000| 1.31 | 1.26 0.96

433 | 40 | 2240 | 0.89 [1.10|0.81
447 30 | 2160 | 1.82 | 1.42|1.28
451 | 30 | 2170 | 2.66 | 1.43|1.86

0.001| 1.33 | 1.25 0.94
0.020| 1.29 | 1.17 0.90
0.126| 1.31 | 1.00 0.77

<| z| <| <| <| z| <| z| <| z| <

The plateau in Fig. 3 of normalized penetration versus the interference parameter g
between the values of .2 and .5 is suggestive. An explanation could be that thereisare-
gion where the penetrator interacts with the crater wall and * bounces' back into the chan-
nel but not with enough velocity to interact with the other side of the crater wall before the
penetration event is complete. In his CTH calculations of pitched rods impacting RHA,
Littlefield [6] has observed a qualitative difference in the crater as the pitch angle increa-
sesfrom just above the critical angle to much aboveit. At the lower pitch angle, the crater
resemblesamirror image of theimpacting rod. That is, if thetail of the rod impactsto the
right of the nose, then the bottom of the crater isto theright of the crater mouth. At larger
pitch angles, the opposite occurs: atail-right impact resultsin acrater the bottom of which
istotheleft. This suggeststhat there may be arange of intermediate, transitional pitch an-
glesthat result in astraight crater and that may correspond to the plateau in Fig. 3.

The next plot (Fig. 4) shows how normalized penetration varies with increasing y/yc
for the same data set as plotted for Fig. 3. Comparing this trend to the previous trend in
Fig. 3implies that some information is not being captured about the condition of the rod
prior to impact when using the y/yc correlation. The g method (Fig. 3) demonstrates a
tighter grouping with an R2 value that is about 10% better for athird order polynomial fit
as compared to the y/yc method (Fig. 4) for measuring penetration performance. Thus the
volumetric interference method will be a more descriptive method of performance cha-
racterization.
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Figure3.

Fig. 5 on the following page shows how q varies with increasing angle of attack.
Again, these are all right circular tungsten cylinders into normal RHA at a nominal 2.2
km/s. This graph shows that the relation between q and angle of attack is behaving as one
would expect: the higher the angle of attack, the higher the value of q thus not actingin a
manner that would cause suspicion of the method’sreliability. Using g also hasthe logical
advantage of collapsing all values of y/yc lessthan one, aregime where no penetration de-
gradation should occur, onto asinglevalue of g =0.
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CONCLUSIONS

Based on the results of this case study, the proposed method of penetration perfor-

mance characterization seems viable. As in the applications section, the proposed para-
meter isatool that could have many uses for both penetrator and target characterization.
More studies should, and will be, conducted to verify the results by using other data sets
for different penetrator L/Ds and vel ocities to see whether or not the same types of trends
occur.
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