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PENETRATION EFFICIENCY OF TUNGSTEN PENETRATORS
INTO GLASS FIBER REINFORCED RESIN/STEEL

COMPOSITES AS A FUNCTION OF ASPECT RATIO AND
IMPACT VELOCITY

S. Lampert, R. Jeanquartier and B. Lehmann

Defence Procurement Agency, Feuerwerkerstrasse 39, 3602 Thun, Switzerland

INTRODUCTION

In an earlier study Jeanquartier and Lampert [1] presented a simple formula (1) in or-
der to estimate the depth of penetration DOP of tungsten penetrators into layered compo-
site targets. The composite target contains n layers of various materials. The layer thick-
ness ti and the semi-infinite penetration depth Ti of the corresponding layer at a certain
impact velocity are known. At knowledge of the reference penetration depth Pref at the
same impact velocity into the backmost layer the total penetration depth Ptot can be calcu-
lated. In the study by Jeanquartier and Lampert [1] formula (1) was verified by compari-
son of the experiments and the calculations. The experiments were carried out with three
penetrators showing almost equal aspect ratios but various lengths and the impact velo-
city was kept constant.

(1)

The values of Ti and Pref must be first determined by numerous semi-infinite penetra-
tion tests before applying formula (1). Furthermore, at present no functional relationship
exists to characterize such an experimental data set. In order to apply formula (1) for
example in a vulnerability assessment code it would be helpful if Ti and Pref could be cal-
culated by semi-empirical functions.

In the present study an extended version of an earlier published simple formula
to estimate the total depth of penetration of tungsten long rod penetrators into
layered composite targets is presented. In order to verify this formula different
Glass Fiber reinforced Resin (GFR)/Steel composites were exemplary im-
pacted by two different tungsten laboratory penetrators at variable velocity. The
total depth of penetration into the different GFR/Steel composites was determi-
ned experimentally and afterwards compared with the calculated one. There is
a good agreement between the calculated and the experimental depth of pene-
tration.
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THREE-PARAMETER ANALYTIC FUNCTION

The parameter Pref that refers mostly to RHA as reference material can be determined
with good approximation by the Odermatt formula [2,3] that is especially adapted to the
impact of tungsten long rods into RHA. The parameter T can be estimated for example by
a two-parameter exponential function (2) as suggested by Gooch et al. [4]. The parame-
ters A and B must be adapted to a DOP data set containing corresponding impact velo-
cities. However, this two-parameter function only applies to a single penetrator. Our aim
was to find an adequate function that can be used for arbitrary penetrators at variable im-
pact velocity. As base we used the two-parameter exponential function (2) with the para-
meters A and B. The parameter A was replaced by the product of two different terms (2a).
The first term (2b) describes the influence of the aspect ratio according to the first term of
the Odermatt formula presented in the study by Lanz and Odermatt [3] and the second
term is due to the square root-rho-law for hydro-dynamic penetration. 

(2)

(2a)

(2b)

With T: Semi-infinite penetration (mm)
L: Length of penetrator (mm)
λ: Length to diameter ratio (-)
v: Impact velocity (m/s)
ρT:Density of target material (kg/m3)
ρP: Density of penetrator material (kg/m3)

EXPERIMENTAL SET-UP

The firing experiments were conducted using sub caliber tungsten laboratory pene-
trators with aspect ratios λ=12.3, 13.4, 15.4 and 21.7 launched by sabots. The penetrators
with λ=13.4 and 15.4 were fired from a laboratory gun with caliber 23 mm smoothbore
barrel. The penetrators with λ=12.3 and 21.7 were fired from a laboratory gun with cali-
ber 38 mm smoothbore barrel. The impact velocity was controlled using different weights
of propellant. The distance from muzzle to target was approximately 15 m and two laser
light barriers positioned in front of the target measured the projectile velocity. Yaw angles
of the penetrators were detected stretching parallel sheets of paper directly in front of the
target. Ballistic results from penetrators with striking Yaw angle in excess of 2° were dis-
regarded. 
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Testing the applicability of function (2) with complementary functions (2a) and (2b)
we conducted more than 30 semi-infinite penetration tests with the four laboratory pene-
trators against the material glass fiber reinforced resin (GFR) at variable impact velocity
in the range of 1000–1600m/s and without obliquity. The investigated material GFR, a so-
called ballistic Vetresit®, consists of 72% glass and 28% Epoxy resin. Simulating a semi-
infinite target three to four 102 mm thick GFR blocks one behind the other were stretched
in a steel frame.

In order to verify formula (1) using function (2) with the corresponding Fit-parame-
ters a1, a2 and B composite targets consisting of GFR and rolled homogeneous armor
(RHA) steel layers were impacted by two laboratory penetrators at variable impact velo-
city and with 0° obliquity. Figure 1 shows an schematically sketch of the experimental
set-up.

Figure 1. Experimental set-up.

RESULTS

In order to estimate the three parameters using the original lengths of the four penetra-
tors with truncated conical nose shape the Levenberg-Marquard algorithm was applied.
Possible effects of nose shape are not taken into consideration. The three parameters a1,
a2 and B listed in Table1 however were adapted with good accuracy to the DOP data set of
GFR. The complete DOP data set of material GFR is listed in Table 2. Figure 2 illustrates
the normalized depth of penetration T/L into material GFR versus impact velocity for
each of the four utilized laboratory penetrators. There is a good agreement between the
experimental and the calculated data. Figure 3 shows the influence of aspect ratio in the
defined range of λ>10. In the range of λ>25 the factor of aspect ratio influence becomes a
value of 1 and therefore the penetration is independent of aspect ratio. 

Verifying the extended version of formula (1) experimental and calculated total depth
of penetration data into GFR/RHA composites were compared. In formula (1) the varia-
bles Pref and T were calculated by function (2) using the corresponding parameters a1, a2
and B listed in Table 1. For RHA the parameters a1 and a2 were determined and examined
by Lanz and Odermatt [2] and parameter B was calculated with the functional relation-
ship (5) developed by Jeanquartier and Odermatt [5]. 
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(5)

With
Rm : Tensile strength of the target material steel (MPa)
ρP : Density of penetrator material (kg/m3)

With Rm=1260 MPa for RHA the output of function (5) is B=1.28km/s (1280m/s).
The results of the experimental and the calculated total DOP data are listed in Table 3. 

Table 1. Parameters of three-parameter fit

Table 2. Semi-infinite DOP data set of glass fiber reinforced resin (epoxy)
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Fit Parameters applied in functions (2)
Target Material Density

[g/cm 3]

Tensile
Strength

[MPa] a1 a2
B

[m/s]
Glass fiber reinforced

resin (Epoxy) GFR 1.9 250 – 320 3.8 9.7 1144

Armor steel RHA 7.85 3.94 11.2 12801255 – 1270

Laboratory
Tungsten Penetrator

L/D ratio

Length
L [mm]

Diameter
D [mm]

Mass
 [g]

Velocity
 [m/s]

Depth of Penetration
into GFR
T [mm]

T/L

12.3 110.6 9 115.3 1030 123 1.11

12.3 110.6 9 115.3 1215 173 1.57

12.3 110.6 9 115.3 1221 176 1.59

12.3 110.6 9 115.3 1293 191 1.73

12.3 110.6 9 115.3 1427 223 2.02

12.3 110.6 9 115.3 1509 236 2.13

12.3 110.6 9 115.3 1618 254 2.30

13.4 53.7 4 11.3 1278 85 1.58

13.4 53.7 4 11.3 1368 95 1.77

13.4 53.7 4 11.3 1470 104 1.94

13.4 53.7 4 11.3 1490 107 1.99

13.4 53.7 4 11.3 1574 115 2.14

13.4 53.7 4 11.3 1652 119 2.22

15.4 58.6 3.8 11.3 1323 93 1.59

15.4 58.6 3.8 11.3 1375 97 1.66

15.4 58.6 3.8 11.3 1438 105 1.79

15.4 58.6 3.8 11.3 1470 108 1.84

15.4 58.6 3.8 11.3 1477 108 1.84

15.4 58.6 3.8 11.3 1529 119 2.03

15.4 58.6 3.8 11.3 1534 120 2.05

15.4 58.6 3.8 11.3 1535 126 2.15

15.4 58.6 3.8 11.3 1540 123 2.10

15.4 58.6 3.8 11.3 1543 117 2.00

15.4 58.6 3.8 11.3 1545 115 1.96

15.4 58.6 3.8 11.3 1558 115 1.96

15.4 58.6 3.8 11.3 1568 115 1.96

15.4 58.6 3.8 11.3 1583 118 2.01

15.4 58.6 3.8 11.3 1637 115 1.96

21.7 173.5 8 151 1299 250 1.44

21.7 173.5 8 151 1565 333 1.92
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Figure 2. Three-parameter fit for laboratory tungsten penetrators.

Figure 3. Length to diameter ratio λ as a factor of influence f (λ).
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Table 3. Comparison between the experimental and calculated total DOP

CONCLUSION

We can conclude, that at the example of the material GFR, the Tree-Parameter ana-
lytic function (2) is applicable not even for metallic but also for non-metallic materials
with relatively good approximation.

Verifying formula (1) extended by function (2) various GFR/RHA composite targets
were impacted by two laboratory penetrators with L/D=12.3 and 21.7 without obliquity.
The relative deviation between the experimental and the calculated total depth of penetra-
tion yields less than +7% at all trials. 
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Laboratory
Tungsten

Penetrator

GFR/RHA Composite
(According to Figure 1) Total Depth of Penetration

L/D
ratio

L
[mm]

t1
[mm]

t2
[mm]

Pres
[mm]

Velocity
[m/s] Experiment

Pex  [mm]

Calculation

Pcalc  [mm]

Relative Deviation

(Pex –P calc )/Pex

21.7 173.5 0 102 60.8 1300 162.8 163 -0.1 %

21.7 173.5 0 102 92 1565 194 196.5 -1.3 %

21.7 173.5 21.1 102 52.8 1460 175.9 184.2 -4.7 %

21.7 173.5 21.1 102 27 1260 150.1 157.3 -4.8 %

21.7 173.5 21.1 102 74.9 1600 198 200 -1 %

21.7 173.5 21.1 202.8 44.5 1620 268.4 259 +3.5 %

12.3 110.6 0 102 26.5 1220 128.5 130.5 -1.6 %

12.3 110.6 0 102 43.2 1420 145.2 151.3 -4.2 %

12.3 110.6 0 102 46.7 1500 148.7 158.7 -6.7 %

12.3 110.6 0 102 57.5 1610 159.5 168 -5.3 %
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