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INTRODUCTION

An important problem in penetration mechanics is to determine the effect of having a
weakened target, maybe because the first stage of a tandem charge has damaged the target
before impact of the main projectile.

As a first approach to the general problem, we consider a situation of a projectile pe-
netrating a target containing a pre-drilled cylindrical cavity. Previous work on this topic
has mainly been based on empirical and numerical studies. In this paper we attempt to
model the problem analytically, using the penetration theory based on cavity expansion.

OVERVIEW OF THE PROBLEM

Our situation is illustrated in Figure 1. A projectile with radius a is impacting a target
with a pre-drilled cavity of radius b. It will be convenient to define the relative cavity ra-
dius (or diameter) by R=b/a. Formulas for penetration of targets with pre-drilled cavities
can be given either in terms of absolute penetration depth x, or as relative penetration
depth . Both points of view are of interest and will be presented in this paper.

An analytical model for penetration of rigid projectiles into concrete targets
containing pre-drilled cavities is developed. The model is based on a modifica-
tion of cavity expansion theory. It is compared with other semi-empirical
models and two sets of experimental data. However, due to lack of triaxial con-
crete data from the experiments, the concrete properties had to be estimated
from an empirical relation. Despite this, the model is seen to give qualitative
agreement with experiments, but further research and experiments are needed
to examine the quantitative predictions of the analytical model.

TB36



Figure 1: Penetration of a projectile of radius a into a target with pre-drilled cavity of ra-
dius b.

PREVIOUS WORK

The problem of having a concrete target with pre-drilled cavity was first examined by
Murphy [1]. His approach was based on Bernard’s empirical equation [2] for penetration
into rock, which was modified in the following way:

(1)

where d=2a is the projectile diameter, m is the mass, v0 the impact velocity, ρ is the con-
crete density and σc is the compressive strength. However, the relative penetration depth
X is easily seen to take on a much simpler form:

(2)

Folsom [3] modified the ACE empirical equation [4] with two unknown constants that
were empirically determined according to his experiments. His final result was:

(3)

For sufficiently large velocities, the first term dominates over the two other terms, and
the relative penetration depth is easily seen to reduce to a quite simple expression:

(4)

The same problem was later examined by Mostert [5], who used a combination of nu-
merical and experimental observations to independently rederive Equation (2).
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MODIFIED CAVITY EXPANSION THEORY

In this paper we slightly modify the penetration theory of cavity expansion to make it
applicable to penetration of targets containing pre-drilled cavities. A similar approach has
recently been suggested independently by Szendrei [6]. See Teland [7] for a review of ca-
vity expansion theory.

When an initial cavity of radius b is present in the target, the force on the projectile can
be found by integrating only over the part of the surface that is in contact with the target
material.

Figure 2: The projectile and initial cavity geometry.

This amounts to integrating from φ1 to π / 2, instead of from φ0 to π / 2 as in regular
cavity expansion theory, where the angles φ1 and φ0 are defined in Figure 2. The expres-
sion for the force can now be written as:

(5)

where the function pr is an estimate of the radial stress on the projectile during penetra-
tion. It is found from cavity expansion theory and can in many cases be approximated by:

(6)

where A and B are constants depending on properties of the target material, v is the projec-
tile velocity and the angle φ defines the position on the projectile surface. After some
cumbersome algebra, our final result for the force becomes:

(7)
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Equation (7) is consistent with regular cavity expansion theory when R = 0. For a
given material model, A and B can be calculated analytically or numerically directly from
cavity expansion theory. For concrete, they will typically depend on the elastic parame-
ters, triaxial yield curve and other properties of the corresponding target material. Some-
times a complete concrete description is unavailable, in which case A and B can be appro-
ximated by an empirical expression derived by Forrestal et.al. [8–9]. This is seen to be
only dependent on σc:

(8)

PENETRATION DEPTH

The penetration process can be divided into two phases. In the initial penetration
phase, the projectile has either not interacted with the target yet (because of the cavity) or
only a part of the nose is in contact with the material. The phase ends when the projectile
has penetrated a distance xinit and is completely surrounded by target material. We will
find a numerical solution (see Berthelsen [10]) for this phase as it turns out to be impos-
sible to describe analytically.

After the initial penetration phase, Equation (7) for the total force on the projectile can
be combined with Newton’s 2nd law to calculate the projectile deceleration. The penetra-
tion depth in this phase is then eventually found to be given by:

(9)

where v1 is the velocity of the projectile after the initial penetration phase. In cases where
the initial phase can be neglected, we can put v1 = v0. Assuming this, we have the follow-
ing expression for the normalised penetration depth X:

(10)

For low velocities, and ignoring the contribution from xinit, Equation (10) can be
shown to approach the result of Equation (2).

COMPARISON WITH EXPERIMENTAL DATA

Both Folsom and Mostert have performed penetration experiments into concrete tar-
gets with pre-drilled cavities of various diameters. In this section we will compare our
analytical theory with their experimental data.
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Experimental data from Folsom

Folsom performed experiments with 5.93 kg projectiles of diameter 88.6 mm and
nose curvature ψ = 1.25. The concrete had a compressive strength of 48.5 MPa, a density
of 2370 kg/m3 and the impact velocity was approximately 206 m/s. The diameter of the
concrete targets was 40.64 cm, which gives a ratio between target and projectile diameter
of only 4.59. This was probably not enough to stop boundary effects from increasing the
penetration depth, as discussed in Teland and Sjøl [11].

Figure 3: Penetration depth as a function of cavity radius for an 88.6 mm projectile im-
pacting 48.5 MPa concrete targets.

ln Figure 3 we have plotted the absolute and relative penetration depth as a function of
the relative cavity radius R. Murphy’s formula is seen to overestimate the penetration
depth for large R in both cases, whereas Folsom’s formula seems to be pretty accurate,
especially for large initial cavities. This is not surprising as Folsom’s formula was created
on the basis of curve fitting to exactly these experimental data. The cavity expansion ap-
proach is seen to consistently underestimate the absolute penetration depth, which is how-
ever to be expected if boundary effects were present. It overpredicts the relative pene-
tration depth, which is related to the underprediction of x(R = 0).

Experimental data from Mostert

Mostert has performed several experiments with projectiles impacting reinforced con-
crete targets containing initial cavities of various diameters. According to Mostert [12],
the projectile had a mass of 141.6 g, diameter 20 mm and ψ = 2.11. The concrete had a
compressive strength of 20 MPa and an estimated density of 2000 kg/m3.

The targets were 30 cm thick and had a diameter of 30 cm, which gives a target/pro-
jectile diameter ratio of 15. Boundary effects should therefore not be present in the expe-
riments, except perhaps in the cases of large initial cavity when the projectile almost per-
forated the target.
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Figure 4: Penetration depth as a function of cavity radius for a 20 mm projectile impacting
20 MPa concrete targets.

Mostert fired two shots for each initial cavity diameter, but the same velocity of 
350 m/s was not always obtained. In our comparison we have used the data paints which
were closest to 350 m/s.

In Figure 4 we have plotted the penetration depth as a function of cavity radius. It is
seen that none of the formulas agree very well with all the experimental data. The cavity
expansion approach, however, is seen to give good result for R=0, but underpredicts pe-
netration in the other cases. This could be due our applied concrete model being inaccu-
rate and possible boundary effects at the rear of the target. Folsom's equation is seen to
very much underestimate the relative penetration depth.

Mostert also performed experiments with the same targets but only 15 cm deep initial
cavities. The cavity expansion based theory can easily be adapted to this case as well. If
the projectile penetrates deeper than 15 cm, we only have to switch to normal theory
(R=0).

Figure 5: Penetration depth as a function of cavity radius for a 20 mm projectile impacting
20 MPa concrete targets with initial cavities of 15 cm.
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In Figure 5 we have plotted the absolute and relative penetration depth as a function of
cavity radius compared to Mostert’s experimental data for 15 cm deep cavities. The other
formulas were not applicable to this case. It is seen that the absolute penetration depth is
somewhat underestimated by the formula, while the relative penetration depth seems to
fit the data quite well. Again this could be explained by the applied concrete model being
inaccurate.

SUMMARY

We have presented an analytical method for calculating penetration into a target con-
taining a pre-drilled cavity. This should be considered as a first approximation to the full
problem of penetration of a tandem charge.

The model has been compared with two sets of experimental data and the results so far
indicate that it might be able to predict the penetration depth when an initial cavity is pre-
sent. However, the accuracy of the model is uncertain since the complete triaxial proper-
ties of the concrete used in the experiments were not known, and the material constants of
the model therefore had to be estimated through an empirical relation. Also, boundary ef-
fects might have been present in some of the experiments, which again makes it difficult
to compare the experimental results with the predictions of the model. It is clear that fur-
ther research and experiments are needed on this topic.
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