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INTRODUCTION

High strength ceramics are an essential part of most modern lightweight armor sys-
tems because of their high hardness at relative low densities. The hardness is of particular
importance if the material is employed to defeat armor piercing projectiles with a high
hardness steel or tungsten carbide core. However, it is well known that projectile impact
causes severe fracture in ceramics and therefore significantly reduces their ability to de-
feat a second or third hit. Thus, a type of material is needed which combines the hardness
of a ceramic with a sufficient toughness that restricts fracture in order to achieve an armor
system with multiple hit capability.

Candidate materials for this application are ceramic metal composites. The ballistic
performance of aluminum alloys, reinforced with Al2O3- or SiC-particles has been tested
with tungsten projectiles in Depth of Penetration (DOP) test arrangements by Vaziri et al.
and Bless et al. [1, 2]. The experiments demonstrated a superior ballistic resistance of the
cermets compared to aluminum alloys. The volume fraction of the ceramic particles in
those tests had been 10–30%.

In the study reported here a different approach with respect to the materials was cho-
sen. The main part of the Al2O3-Al cermets consisted of ceramic phase. The metal frac-
tion ranged from 15% to 30% only. A low purity aluminum oxide ceramic (Al2O3-92%)
was selected as reference material for the assessment of the ballistic performance of the
new materials.

The ballistic resistance of Al2O3-Al composites against 7.62 mm AP projectiles
was determined. Three cermet materials based on different A12O3 ceramic pre-
forms were tested. The ceramic preforms were infiltrated with a high strength
aluminum alloy by squeeze casting. The ceramic volume fraction of the materials
was in the range from 70% to 84%. The ballistic limit velocities of cermet/alumi-
num two layer target configurations were determined. Edge-on impact tests were
conducted in order to characterize the fracture behavior of the composites.
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MATERIALS

The Swiss Federal Laboratories for manufactu-
red three cermet material versions based on diffe-
rent Al2O3-ceramic preforms of different porosity
and structure. The ceramic preforms were infiltra-
ted with the high strength aluminum-alloy
AlCu4Mg1 by squeeze casting. The ceramic vo-
lume fraction in the materials was 70% with Cer-
met 1 and Cermet 3, and 84% with Cermet 2. The
ceramic preforms of Cermet 1 and 3 were manu-
factured by EMPA, the preforms of Cermet 2 were
a commercially available porous ceramic of Hal-
denwanger Company. Whereas the ceramic phase
of the Cermets 1 and 2 exhibits a continuous struc-
ture, Cermet 3 was manufactured from a preform
processed by dry spraying and cold compaction
consisting of a tri-modal mixture of alumina parti-
cles that were not sintered together. The structure
of the different materials is illustrated in the micro-
graphs of Figures 1a–1c. Cermet 1 mainly consists
of sintered spheric agglomerates of finest alumina
particles (gray) completely infiltrated with and sur-
rounded by aluminum (white). Cermet 2 features a
sintered structure of coarse and fine alumina parti-
cles clearly illustrating the continuous ceramic
structure. Cermets 1 & 2 consist of percolating alu-
mina and aluminium networks. The structure of
Cermet 3 is basically different, as evidenced in Fi-
gure 1c. The individual alumina particles are isola-
ted and completely surrounded by the aluminum
matrix.

An Al2O3-ceramic (Al2O3-92%) of the same density as Cermet 1 was chosen as a re-
ference material for the assessment of the ballistic resistance of the new materials. Me-
chanical and physical properties of the cermets and the reference ceramic are listed in
Table 1.

Table 1: Material properties
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Figure 1a: Micrograph of Cermet 1.

Figure 1b: Micrograph of Cermet 2.

Figure 1c: Micrograph of Cermet 3.



BALLISTIC RESISTANCE

The main field of a possible application of the cermets will be lightweight armor
against small caliber AP projectiles. For this reason the targets, employed for the ballistic
performance assessment of the cermets, ought to be similar to real configurations with re-
spect to material combinations and total weight.

Residual Velocity

Two layer targets which consisted of a cermet and an aluminum (AlCuMg1) plate
were employed for the assessment of the ballistic performance against 7.62 x 51 mm AP
(steel core) ammunition. The cermet tiles of the dimensions 100 mm x 100 mm were
fixed to the aluminum plates by a polyorethane glue. Figure 2 shows the residual velocity
vR versus impact velocity vP for seven different target configurations. Three of the cera-
mic materials were tested in combination with aluminum plates of 4 mm and 6 mm thick-
ness. Cermet 3 was tested only in combination with a 6 mm aluminum plate. The seven
target configurations corresponded to only two different total areal densities, 47 kg/m2

with the 4 mm aluminum plate and 52 kg/m2 with the 6 mm aluminum plate. The total
weight of the targets including Cermet 2 was slightly higher because of the higher density
of the cermet. The reference target (Al2O3-92% + Al) with the 6 mm aluminum plate was
not perforated at impact velocities of 840 ± 10 m/s. A reduction of the aluminum plate
thickness by 2 mm lead to a drop of the ballistic limit velocity vBL of about 200 m/s. It
can be recognized from Figure 2, that with all materials there was a wide zone of mixed
results, where the residual velocity vR could be either zero or a few hundred meters per
second. Thus, an estimate of the ballistic limit velocities was difficult. The dashed vR-vP-
curves are approximations of the experimental data based on a Recht equation [3]. The
vR-data in Figure 2 show that the ballistic performance of Cermet 1 and Cermet 3 was sig-
nificantly lower than the performance of the reference aluminum oxide. The ballistic limit
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Figure 2: Residual velocity vR versus irnpact velocity vP for two layer targets with cer-
mets and Al2O3.



velocity of the 52 kg/m2 target with Cermet 1 was about 250 m/s below that of the refe-
rence. With the 47 kg/m2 target the difference in vBL is less than 100 m/s. The ballistic re-
sistance of Cermet 3 targets was even lower compared to Cermet 1. Only the Cermet 2
targets exhibited a ballistic performance similar to the reference material.

Residual Penetration

A few additional penetration tests were conducted with specimens of Cermet 1 and
Cermet 3. The cermets were glued to a thick aluminum (AlCuMg1) backing and the resi-
dual penetration PR of the steel core of the 7.62 mm projectiles into the aluminum was
measured. In these tests the cermet tiles were laterally confined in a steel frame. The pe-
netration data are depicted in Figure 3. The PR-curves show the inferior ballistic resistance
of Cermet 3 compared to Cermet 1.

IMPACT DAMAGE

Not only the ballistic resistance, but also the im-
pact damage behavior are decisive factors for the
quality of a material for multi-hit capable armor. Fi-
gure 4 illustrates the impact damage in the cermet
tiles under similar conditions. The photograph on
the upper left side shows a specimen of the refe-
rence ceramic after perforation. The dimensions of
the reference ceramic plate were 180 x 180 mm in
contrast to the cormet specimens, which were 100 x 100 mm. The pictures show that im-
pact damage in Cermet 1 is very similar to the reference ceramic, or even worse.

Al2O3-92% Cermet 1

Cermet 2 Cermet 3
Figure 4. Comparison of impact damage in cermets and reference ceramic.
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Figure 3. DOP-data for cermets.



However, a significant reduction of damage
can be recognized with the Cermets 2 and 3. Only
six radial cracks were formed, probably due to
bending of the cermets in a late phase of the perfo-
ration. While Cermert 2 still exhibits a fairly large
zone (maximum diameter ≈ 40 mm) where the ce-
ramic material is completely fragmented, Cermet 3
exhibits a perforation crater of about 15 mm dia-
meter and a zone of about 40 mm diameter where
fragments broke off the rear side of the cermet.
This is demonstrated in Figure 5, which shows the
backside of the Cermet 3 specimen. In the DOP-
tests the diameter of the crater in the cermet was
reduced to the diameter of the projectile’s steel core at the bottom, as the photographs of
the front and back side of a cermet 3 specimen in Figure 6 show.

Figure 6: Impact side (left) and back side (right) of a Cermet 3 specimen in a DOP confi-
guration. 

EDGE-ON IMPACT TESTS

In order to examine the fracture behavior of the cermets Edge-On Impact test (EOI-
tests) were conducted. The EOI-test is designed for the visualization of fracture propaga-
tion during impact in ceramics. [4]. In the EOI-test one edge of the ceramic specimen of
typical dimensions 100 mm x 100 mm x 10 mm is impacted by a steel cylinder and frac-
ture propagation is observed by means of a Cranz Schardin high-speed camera. The EOI-
technique has been applied to many types of monolithic ceramics which have been char-
acterized by their macroscopic damage patterns, damage velocities (crack front
velocities) and single crack velocities as a function of impact velocity. The EOI-technique
has also been successfully employed for the evaluation of damage models [5, 6].
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Figure 5: Backside of perforated
Cermet 3.



Different types of alumina have been examined in EOI-tests before [7]. With almost
all tested alumina a steep rise of the damage velocity vD in the range of impact velocities
from 20 m/s to 200 m/s was followed by a flat part of the vD-vP-curve, where vD only
slowly increased with impact velocity. The maximum damage velocities observed exten-
ded from 75% to 90% of the longitudinal wave velocity cL, which is typically in the range
from 9500 m/s to 10500 m/s for that class of materials.

Phenomenology with Cermets

In this study Cermet 1 was tested by means of the EOI-technique. As the micrograph
in Figure 1 reveals, the ceramic grains of that material are partially surrounded by alumi-
num. Ultrasonic wave speed measurements yielded a longitudinal wave velocity cL =
5060 m/s, which indicates that wave propagation is dominated by the metallic phase. This
result was confirmed by first EOI-tests at impact velocities of about 600 m/s [8]. Those
tests yielded on one hand damage velocities of ≈ 4200 m/s (≈ 80% of cL) and on the other
hand a significant delay in the onset of fracture. During the first 20 µs after impact only a
wave could be observed which propagated at a velocity of 1154 m/s. In recent experi-
ments at higher impact velocities (vP > 700 m/s) neither a delay in the onset of fracture
nor wave propagation was observed. Figure 7 shows a selection of 12 high-speed photo-
graphs from a test at vP = 724 m/s. It is remarkable that the initial cracks in the cermet
plate, which can be recognized across the specimen, had no influence on the dynamic
fracture propagation.

Figure 7: Selection of high-speed photographs from EOI-test with Cermet 1 at vP = 
724 m/s.

CONCLUSION

For an evaluation of the results different aspects have to be considered. Two opposing
requirements have to be met with a material capable of defeating multiple projectile im-
pact: Hardness and strength should be sufficiently high for a good ballistic performance
against AP projectiles and the ductility should be high enough to prevent severe fracture
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formation. Thus the solution will be a compromise. In order to obtain multi-hit capability
a reduction in ballistic performance can probably not be avoided. The crucial point is the
appropriate adjustment of the material properties, especially the volume fractions of the
materials and the architecture of the ceramic phase. Two important conclusions can be
drawn from the experiments:
1. In order to obtain a ballistic performance of the order of magnitude achieved with

monolithic ceramics, the ceramic volume fraction of the cermet has to exceed 70 %
significantly.

2. A continuous ceramic structure causes a fracture behavior similar to monolithic cera-
mic. In order to reduce impact damage a ceramic structure of densely packed, but iso-
lated grains should be selected.
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