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DYNAMIC FRAGMENTATION OF ALUMINA WITH
ADDITIONS OF NIOBIA AND SILICA UNDER IMPACT

L.H.L. Lourol, A.V. Gomesl, C.R.C. Costal

1|nstituto Militar de Engenharia, Departamento de Engenharia Mecanica ede
Materiais, Praca Gen. Tiburcio, 80, Urca, Rio de Janeiro, Brazl

The addition of niobiaand silicato aluminamay decreaseits sintering tempera-
ture to values as low as 1400 °C. The purpose of this work was to investigate
the ballistic behaviour of alumina processed with such additions, by evaluating
itsdynamic fracture toughness under impact. Samples of acommercial alumina
with niobia, silica, and magnesia additions were sintered into disk shape at
1400 °C/ 3 hin order do determine their ballistic properties. For comparison,
this ceramic was also submitted to sintering without additions using a conven-
tional heat treatment of 1600 °C / 1 h before dynamic testing. Ballistic tests
were carried out gluing the ceramic disksto steel plates and submitting thistar-
get to the impact of a7.62 mm projectile fired from arifle positioned 5 m from
thetarget. The results showed that the alumina containing niobiaand silicasin-
tered at 1400 °C absorbed more energy during fragmentation.

INTRODUCTION

Ceramic materials such as alumina, silicon nitride, and boron carbide, among others,
have been investigated along many decades as components applied to armor systems to
provide protection against projectile penetration. They combine high hardness and low
weight and these properties make them useful for better protection, mobility, and trans-
portation capacity of vehicles. Figure 1 illustrates an armor system where the ceramic
plateispositioned in front of the target and absorbstheinitial impact of the projectile. Be-
hind this hard and brittle plate there are other materials which should be able to plastically
absorb the rest of the energy generated by the impact. Dueto itslow cost and availability
alumina continues to be extensively used as the preferred ceramic material in armor sys-
tems. Usually the aluminawithout special additivesis prepared using a process where the
sintering temperature stays around 1600 °C. In a previous work Acchar [1] sintered at
1400 °C an alumina containing niobia, silica, and magnesia and observed that its mecha-
nical strength was comparable to that of an alumina containg just 0.15 wt% of magnesia
sintered at 1600 °C. The objective of the present work was to investigate the dynamic
fracture toughness behaviour of a commercial alumina containig niobia at different per-
centagesaswell assilicaand magnesiaas additives, sintered at 1400 °C.
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Figure 1: Example of an armor system.

MATERIALS AND EXPERIMENTAL PROCEDURES

The ceramic compositions were prepared using an inexpensive commercia alumina
from ALCOA (APC2011-SG), with additions of niobia, silica, and magnesia as shown in
Table 1. There, the #1 composition, without additives, was chosen as reference since it
was sintered at 1600 °C/ 1 h (standard procedure), for comparison purposes with the ot-
her samplessintered at 1400 °C/ 3 h.

The powders of each composition were ball-milled during 8 hours and dried at 70 °C
in afurnace. After that they were manually broken up using a spatula. After incorporation
of 1.5 wt% of binder to provide green strength the powder mixture was pressed in a steel
matrix into 57 mm diameter disks with 60 MPa pressurein auniversal Instron testing ma-
chine. The pressed samples were then submitted to 350 °C / 4 h heat treatment for binder
burn-out. The specimens were sintered in air in the conditions shown in Table 1. After
sinterization, the samples were characterized by measuring the Vickers microhardness as
well the degree of densification employing the Archimede's method.

The ballistic tests were carried out gluing the ceramic disks to steel plates and then
submitting this target to the impact of a 7.62 mm projectile fired from arifle positioned
5 m fromthetarget, asshownin Figure 2.
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Figure 2: Target set-up showing the ceramic plate between steel plates.

The projectile vel ocity was measured immediately before and shortly after the impact.
Based on these velocity measurements, the energy absorbed by the ceramic disk during
fragmentation was determined and used to estimate the alumina dynamic fracture tough-
ness. In this evauation, the energy absorbed by the steel plates was computed and dis-
counted.

Fragments of the impacted alumina were recovered and observed by scanning elec-
tron microscopy to determine the mode of fracture (transgranular or intergranular) which
of the samples.

RESULTS AND DISCUSSION

Table | shows the data of microhardness, densification, energy absorption, and frac-
ture mechanism for the investigated compositions. In this Table, if one compares the den-
sification data for #2 sample (without additives) with the samples from #3 to # 13 (all
with additives), it becomes clear that the niobia addition helped consolidation during alu-
mina sintering under the same conditions. It isalso evident that the sintering behaviour of
#1 sample at 1600 °C / 1 h was worse than for most samples of alumina with additions
sintered at 1400 °C/ 3 h. Thisreinforcestherole of niobiain promoting sintering at lower
temperatures. Acchar [1] considered that the addition of niobia to alumina formed a se-
cond phase (AINbOg4 ), and & so mullite when in presence of silica. These componentsre-
mained at the aluminagrain boundaries, controlling grain growth and improving pore eli-
mination throughout the grain boundaries and consequently increasing the sintered
densities.
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Table 1: Investigated Compositions and Experimental Results

Sample| Al,O; | Nb,O; | SIO, | MgO | Sintering | A B C D
@ @) | ) | ()| (%) | CCh) |(HY)]| (%TD) | (J)
1 100 - - - 1600/1 | 1261 | 84.2 |1944+104| T
2 100 - - - 1400/3 | 242 | 645 |1422+109| |
3 96 4 - - 1400/3 | 1319 | 87.2 | 2497+43 | |
4 95.2 4 0.8 - 1400/3 | 775 | 86.3 | 2480445 | |
5 94.05 4 08 | 115 | 1400/3 | 1028 | 89.8 | 2395+28 | M
6 95.05 4 08 | 015 | 1400/3 | 994 | 89.0 242046 | M
7 97.05 2 08 | 015 | 1400/3 | 815 | 86.3 |2251+196| |
8 93.05 6 08 | 015 | 1400/3 | 1082 | 86.8 |2251+163| M
9 92.25 8 08 | 0.15 | 1400/3 | 947 | 89.8 | 2435+88 | |
10 94 6 - - 1400/3 | 966 | 87.7 |2300+199| M
11 93.2 6 0.8 - 1400/3 | 888 | 80.5 | 2446+19 | |
12 92 8 - - 1400/3 | 1307 | 91.2 | 2202+97 | |
13 91.2 8 0.8 - 1400/3 | 761 | 81.1 | 2454+38 | |

TD: Theoretical Density
A:VickersMicrohardness; B: Densification; C: Fracture Energy Absorbed
D: Predominant Fracture Mechanism (T-Transgranular; |-Intergranular; M-Mixed)

Asshown in Table 1, the results of microhardnessindicated that the aluminawith nio-
bia additions was harder than the alumina containing niobia and silica. A hard ceramic
face isdesirable to destroy the projectile tip and thus decrease the projectile penetration
power upon impact. It was also observed that in the samples with silica, the microhard-
ness was lower but the absorbed energy was relatively high, as can be seen, for example,
comparing the results for samples#3 and #4.

The alumina dynamic fracture toughness, estimated from the absorbed energy shown
in Table 1, illustrates that this parameter upon impact depends on the strength of the alu-
minagrain boundaries and the mode of fracture taking place during the ceramic fragmen-
tation process. Therefore, for sample #2 where densification was poor, the absorbed
energy was smaller due to the weak adhesion between the alumina grains as well as the
high porosity present in this sample as a result of the unsatisfactory sinterization of alu-
minawithout additivesat 1400 °C/ 3 h.

Sample #1, sintered at 1600 °C, showed reasonable microhardness and density but
lower energy absorption when compared with the samples containing niobia and silica
sintered at 1400 °C. This sample a so exhibited predominantly the transgranular mode of
fracture, as shown in Figure 3, indicating that crack propagation and energy dissipation
were low, since extensive crack branching did not take place, aswould be expected in the
case of intergranular mode of fracture.
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Figure 3: Dynamic fracture surface of sample #1 obtained by SEM, showing predomi-
nantly transgranular mode of fragmentation.

On the other hand, if one considers the other samples where alumina with additives
were sintered at 1400 °C/ 3 h, one can see that most samples exhibited the intergranular
mode of fracture. For these aluminas the energy absorbed was also superior than that of
#1 sample, because crack branching occurred throughout the grain boundaries, helping to
consume energy and consequently resulting in better dynamic fracture toughness. Figures
4 and 5 show the dynamic fracture of samples#3 and #4 respectively, revealing a predo-
minantly intergranular mode of fracture. Louro and Meyers [2] have developed a frag-
mentation model applied to brittle material s such as ceramics based on nucleation, growth
and coalescence of microcracks. This model takes into account the passage of a shock
wave through the target [ 3]. When a projectile hits the armor system, acompressive shock
wave travel s through the target and produces damages. Microcracks are nucleated at pre-
ferential sites such asweakly bonded grain boundaries, voids, or second phases precipita-
ted between grains[4,5]. This probably explainswhy fragmentation takes place preferen-
tially at grain boundaries as observed by scanning electron microscopy (SEM) [6] in the
alumina containing both niobiaand silicaas additives of sintering at 1400 °C.
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Figure 4: Dynamic fracture surface obtained by SEM from sample #3 showing predomi-
nantly intergranular mode of fragmentation.

Figure 5: Dynamic fracture surface obtained by SEM from sample #4 showing predomi-
nantly intergranular mode of fragmentation.

CONCLUSIONS

1. Theuseof niobiaand silicaas sintering additivesin aluminapromoted better densifica-
tion under sintering at 1400 °C/ 3 hthan 1600 °C/ 1 hin the aluminawithout additions.

2. The presence of niobia, silica, and magnesiain alumina, generating precipitates of se-
cond phases in the alumina grain boundaries, increases the absorption of energy dur-
ing impact by promoting aintergranular mode of fragmentation.

3. The ballistic performance of the alumina without additions sintered at 1600 °C was
worse than the aluminas with additions sintered at lower temperature; thisis attribu-
ted to the transgranular mode of fragmentation, which presented low energy dissipa-
tion upon impact.
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4. The presence of niobia increased the microhardness of alumina and the presence of

niobia and silica decreased its microhardness. The first effect contributed to destroy
the projectile tip more efficiently and the second contributed to energy dissipation
upon fragmentation.
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