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INTRODUCTION

Fiber Reinforced Plastic (FRP) showing good ballistic protection behavior and low
density is used as tissue in body armor systems, as spall liner or as structural components
in armored vehicles. The protection efficacy of Pressed Laminate of Rubber coated Ara-
mid Fabric (LRAF) applied to spall liner on the rear side of Rolled Homogeneous Armor
(RHA) plates with high hardness was described in a study by Strassburger et al. [1] and in
another study by Lampert and Jeanquartier [2]. 

In terminal ballistic literature describing ballistic performance of textile fabrics often
there is only mentioned the mass efficiency factor (Em) for the special threat Fragment Si-
mulating Projectile (FSP). An eventual dependency by a different threat or the influence
of impact velocity, impact conditions, mass and shape of fragment is not taken into consi-
deration. The Em factor often is also assumed to be a constant and therefore the influence
of mass and impact velocity of projectile is neglected. But caution is advisable just at the
determination of the Em factor for textile fiber fabrics. Determining the Em factor perfora-
tion limit of target and reference material depending on mass and impact velocity of pro-
jectile needs to be known. In the present study it is exemplary pointed out how the Em fac-

In the present study Aluminum plates and plates of Pressed Laminate of Rubber
coated Aramid Fabric (LRAF) were impacted by cylindrical projectiles of steel
in order to determine the corresponding ballistic limit velocities. For both ma-
terials Aluminum and LRAF the mass efficiency factor EM influenced by pro-
jectile mass and impact velocity was calculated using the reference material
rolled homogeneous armor (RHA) steel. The EM factor for Aluminum is inde-
pendent of projectile mass and increase quasi linearly with increasing impact
velocity. The EM factor for LRAF is influenced by both projectile mass and im-
pact velocity. The values of the EM factor within the investigated range of velo-
city lie for Aluminum between 1.3 and 1.8 and for LRAF between 1.7 and 3.2. 
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tor of LRAF is influenced by mass and impact velocity of cylindrical projectiles. The pro-
tection efficacy of LRAF, Aluminum and RHA is compared with special focus on the in-
fluence of projectile mass and impact velocity. For that purpose several plates of LRAF,
Aluminum and RHA were impacted without obliquity by cylindrical projectiles of steel
varying mass and impact velocity of projectiles and varying thickness of plates.

EXPERIMENTAL SET-UP

The cylindrical projectiles of steel C45 (Brinell-Hardness 240BH) with a length to di-
ameter ratio L/D=0.8 launched by sabots of plastic were fired with a 23 mm caliber
smooth barrel laboratory gun. The range of impact velocity was between 500 m/s and
1800 m/s, the mass of projectile varied between 4.95 g and 31.5 g and the obliquity was 0°
NATO. The distance between muzzle and target was 6m and the projectile flied quite
stable without tumbling. Two laser light barriers positioned 2 m in front of the target
measured the projectile velocity.
The effective impact velocity
was calculated taking the velo-
city drop of the projectile into ac-
count. The Yaw angle α of
projectile was so small that per-
foration performance of projec-
tile did not show any influence.
Figure 1 illustrates the fixation
technique of target material
especially how the LRAF plate
is stretched in a special frame.
The three investigated target
materials are listed in Table 1.

Figure 1.

Table 1: Properties of investigated target materials
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Properties/
Material

RHA Aluminum
Pressed Laminate of Rubber coated Aramid

Fabric (LRAF)

Structure Homogenous Homogenous
Layered Aramid fabrics are vulcanized

by rubber
(d=10.5 mm corresponds to 21 layer fabrics)

Density ρ 7.85g/cm3 2.8g/cm3 1.2 g/cm3

Brinell-
Hardness

470 – 510HB 125HB -

Thickness d 7 – 14 mm 20 – 30 mm 15 – 53 mm



RESULTS

Residual Mass of Projectile

Loss of projectile mass after perforating Aluminum or LRAF plates yields less than
4%, whereas the C45 steel projectile shows an enormous loss of mass perforating the
RHA plate. 

Deformation of Projectile

With help of the deformation condition defined by the ratio AA/A0 (with AA : Maxi-
mum cross-section area of deformed projectile after perforation, A0: cross-section area of
projectile before impact) the deformation behavior of projectile without mass loss was in-
vestigated (Fig. 2). Penetrating Aluminum maximum state of deformation is already
reached at an impact velocity of v=1200 m/s. At this velocity the deformation of projec-
tile penetrating LRAF is still low. At v=1760 m/s the deformation of projectile in LRAF is
smaller than in Aluminum. Projectiles are slowed down relatively mild in LRAF. 

Figure 2.
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Deformation of Target Material

At the example of trials with 4.95 g projectiles the deformation of target and the defor-
mation of a retained projectile is analyzed (Fig. 3).

Figure 3.

Impact Velocity v=1200 m/s

Aluminum: Deformation of projectile has reached a maximum. Target material is re-
placed and rejected forming a crater. There’s only a slight bulging on the rear side of tar-
get material.

LRAF: The diameter of impact crater corresponds to the diameter of projectile. Only
the upper part of the textile tissues is perforated, whereas the lower part is delaminated
showing bulging effects.

Impact Velocity v=1765 m/s

Aluminum: The diameter along the perforation channel stays constant. On the rear
side of target cracks occur and a thick plug with diameter equal to that of projectile breaks
out. 

LRAF: The dynamic bulging is significant higher than the remaining. 
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Perforation Limit

Between the normalized perforation limit d/m1/3 versus the ballistic limit velocity 
vlimit exists a linear relationship presented in a study by Strassburger et al. [1]. The two
Parameter function (1) describing this linear relationship is accurate for metallic target
material such as Aluminum and RHA in a range of vlimit=600 m/s–2000 m/s for projec-
tiles with aspect ratio L/D≈1. 

(1)

With d : Perforation limit (m)
m : Mass of projectile (kg)
vlimit : Ballistic limit velocity (m/s)

For Aluminum and RHA the ratio d/m1/3 remains constant holding limit velocity con-
stant but varying mass of projectile. For LRAF such a behavior could not be observed
(Fig. 4). For each mass of projectile an own Fit-function has to be adapted. The utilized
Fit-functions with accuracy of velocity range are listed in Table 2.

Figure 4.
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d/m1/3 = k1 + k2⋅vlimit



Table 2: Fit-Functions

MASS EFFICIENCY FACTOR EM

Mass efficiency factor for the materials LRAF and Aluminum using RHA as reference
material (Table 1) was calculated according to formula (2). 

(2)

The two parameters dref and di were calculated by empirical functions listed in 
Table 2. The maximum thickness of the investigated LRAF plates was 53 mm having
v=1250 m/s ballistic limit velocity for the 9.85 g projectile. The prediction of performance
of the 9.85 g projectiles could therefore only be done in the velocity range of 700 m/s to
1300 m/s.

Range of Velocity 700 m/s–1300 m/s 

In contrast to metallic target materials the EM-factor of LRAF is dependent on mass of
projectile (Fig. 5). With increasing impact velocity the EM-factor increase for Aluminum
and decrease for LRAF. At 700 m/s there’s a maximum difference between the EM-factors
of the two materials. At equal perforation resistance the areal density of LRAF plate is ap-
proximately 2.1–2.5 times lower than that of Aluminum. At 1300 m/s and using the 9.85 g
projectiles there’s no difference between the two EM-factors, thus the two materials have
the same areal density.
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Target

Material

Mass of projectile

Accuracy of velocity
range

Fit-Function

RHA d/m1/3 = -2.097⋅10-3 +5.727⋅10-5⋅v

Aluminum

Arbitrary Mass

700< v <2000m/s d/m1/3 = 3.416⋅10-2 +6.609⋅10-5⋅v

m = 4.95g=0.00495kg

700< v <1800m/s
d/m1/3 = 3.024⋅10-1 -7.867⋅10-4⋅v +8.483⋅10-7⋅v2-2.383⋅10-10⋅v3

LRAF
m = 9.85g=0.00985kg

700< v <1300m/s
d/m1/3 = 2.273⋅10-1 –4.636⋅10-4⋅v + 3.836⋅10-7⋅v2

EM = (ρref · dref)/(ρi · di)



Range of Velocity 1300 m/s–1800 m/s 

In the range of v>1300 m/s the EM-factor of LRAF for the 4.95 g projectile is only
slightly influenced by velocity, whereas for the 9.85 g projectile the EM-factor of LRAF is
lower than that of Aluminum (Fig. 6). In that case the areal density of an Aluminum plate
is smaller than the areal density of a LRAF plate.

Figure 5.

CONCLUSION

The EM factor of Aluminum is independent of projectile mass and by increasing velo-
city Aluminum plates become lighter in comparison with steel plates showing an equal
protection. The EM factor of LRAF is dependent on projectile mass. Unlike Aluminum
the EM factor of LRAF is steadily reduced increasing impact velocity. A further effect was
also observed. At equal impact velocity deformation of projectile within LRAF is clearly
lower than within Aluminum or within RHA and there’s only a loss of projectile mass per-
forating RHA plates. 

Only at knowledge of all-important factors of influence protection arrangements can
be optimized mass efficiently.
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