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INTRODUCTION

Cost and weight effective light armours are used for protection against high velocity
fragments and AP ammunitions. Their performance strongly depends on the design in
terms of plate construction and thickness. The considered experimental test program on
the combined armour has been described in detail previously [1]. Thus, only the key in-
formation needed for validating the numerical simulations is given here. The bi-layered
armour (see Fig. 1, left) consists of a front plate of hard armour steel XH129 (30 CrMo
25, Hardness 480–530 HB, Yield Limit Rp0,2= 1300 MPa, Ultimate Strength 1600 MPa).
Plate thicknesses of 7.9 mm and 13.5 mm were chosen. The steel plate is backed by
pressed laminates of 5, 10 or 21 layers (2.4 / 4.8 / 10 mm thickness) of neoprene coated ara-
mid fabric. The lateral dimensions of the target are 200 x 200 mm, clamped in a massive
rectangular steel frame with inner an inner opening of 150 x 150 mm. The projectiles are
carbon steel C45 cylinders (aspect ratio of L/D = 0.8, D = 17.2 mm) simulating natural
fragment impact. Flash X-ray radiographs and high-speed photography (see Fig. 2) are
employed to determine residual projectile and fragment velocities and the time resolved
deformation of the laminate. The protective performance is demonstrated by ballistic li-
mit curves, e.g. plotting the normalised areal density (ρFTOT=ρFSTEEL+ρFLINER, norma-
lised by the projectile diameter D) versus the projectile velocity (Fig. 1, right).

Layered armour designs combining front plates with high shearing strength and
deformable liner materials to catch debris or projectile fragments have been to
be specially weight effective. The understanding of the underlying synergistic
effects is necessary for effective armour designs. In this paper the component
high hardness steel and aramid cloth are separately characterised in specific
material tests at high strain rates. From these tests input data is derived for con-
stitutive models which is employed in hydrocode simulations of impacts on bi-
layered lightweight armours. Steel cylinders (L/D=0.8, 25 g) impacting at 900
to 1300 m/s are considered. The reproduction of the experimental results is dis-
cussed and synergistic effects are analysed.
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Figure 1: (left) experimental configuration; (right) ballsitic limit depending on ratio
steel/liner.

Figure 2: High speed photograph series of liner bulging; 13.5mm steel + 10 layers aramid,
v0=1255 m/s.

The protective role of the liner material is based on its deformability on a high level of
tensile stresses. Significant performance is achieved when the liner is able to follow and
thus decelerate the fragments forming a bulge of 30–60 mm depth (see Fig. 2). Overload-
ing the liner in shear deformation results in failure already at low bulging deformation,
before a significant tensile loading of the liner can occur.

CHARACTERISATION OF THE ARAMID CLOTH

The mechanical properties of aramid cloth were derived from an earlier experimental
campaign on space protection shielding systems [2]. Measuring re-ordering processes of
the weave and yarn stiffness (see Fig. 3, left), uniaxial tensile tests do not characterise pri-
mary mechanical properties of cloth materials. Loading conditions similar to the bulge
formation are induced by a specialised biaxial test method for cloth material developed by
Nahme et al. [3]. A circular sheet (initial radius ρ) is fixed at the end of a shock tube (see
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Fig. 3, right). An increasing pressure in the tube will expand the weave to a spherical
shape. The deflection of the sample centre h is recorded by a high-speed camera placed
parallel to the weave. The displacement can be deduced from camera recordings accor-
ding to the pixel and the time resolution.

Figure 3: (Left) Unixial test results; (Right) Biaxial test configuration for cloth samples.

Radial strains εrr and hoop strains εtt are calculated by simple geometric considera-
tions from the height h of the bulge (1a). As derived in [2] the stresses in the weave are
calculated via the spherical vessel formula depending on the overpressure p by eq. (1,b). 
d denotes the thickness of the cloth.

( 1a,b )

In [2] numerous other material characterisation tests have been performed on aramid
(confined compression test, gauged reactive confinement test, plate impact tests etc.).
These are more relevant for the compression behaviour of the material when employed as
front (attenuating) layer. Capabilities as catching liner materials were found to be mainly
dominated by the tensile behaviour of the weave.

Figure 4: Measured (left) and modeled (right) static and dynamic biaxial stress-strain data
for aramid.
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MODELING APPROACHES FOR WOVEN CLOTH

The tested aramid cloth shows a symmetric 0°/90° weave pattern. Thus, orthotropic
strength properties can be considered, e.g. with the through-thickness direction 1 and the
two yarn directions 2 and 3. The stress-strain relationship is generally written as eq. (2). If
the material symmetry axes 1,2,3 are parallel to the spatial coordinates x,y,z the linear
elastic stiffness matrix [C] is given by eq. (3a).

( 2 )

general orthotropic transverse isotropic (2–3 plane)

( 3a,b )

During uniaxial testing no important difference was noticed among the in-plane stiff-
nesses E2 and E3. Furthermore, the weave formed spherical bulk sections under biaxial
tension. A description as transverse isotropic material with respect to the weave plane
seems therefore justified. 

E2=E3 being defined, the in-plane Poisson effect has to be quantified by υ23 or G23. 
It can be derived by comparing uniaxial and biaxial stiffnesses. A linearised uniaxial ten-
sile stiffness was used as starting point (see Fig. 3, left). The Poisson effect contributes to
the biaxial stiffness as in eq. (4a). This influence is plotted in Fig. 4, right, for the values
for an example value of υ23=0.3. The best agreement with the initial slope in the tests was
obtained specifying υ23=0.05.

( 4a,b )

Two approaches where chosen to reproduce the slope of the biaxial stress-strain curve
up to failure: 
1) Plastic hardening above 90 Mpa: Tangent Modulus ET=45 MPa, (Eelast=5.5 GPa,

υ=0.05)
2) Reduced overall elastic stiffness up to failure (Eelast=593 MPa, υ=0.3).

Both resulting stress-strain curves are compared in Fig. 4, right, to the experimental
data. Failure is activated at εeff=65% effective strain (4b) in agreement with the ultimate
deformations in the biaxial tension test.
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So far, only components of the stiffness matrix describing membrane stresses (bold
components in eq. (3b) are considered. Representing the liner layers by plane stress shell
elements, all components containing E1 are neglected. Through thickness stresses are ex-
clusively handled by the contact algorithm. Nevertheless, bending moments can be consi-
dered through the shear modulus G12. Having no experimental data available on this pro-
perty, a parametric approach was used to study the influence in the ballistic application.
G12 was chosen for υ12=υ23 as an upper bond. In the simulations described below the re-
sulting bending moments showed no effect on the phenomenology and the efficiency of
the armour.

CHARACTERISATION OF THE ARMOUR STEEL

The steel material of the front armour plate was characterised following an integral
characterisation procedure recently proposed by Rohr et al. [4,5]. Ultrasonic measure-
ments specified the longitudinal sound speed to cP = 5880 m/s (plane strain). Quasistatic
tensile properties at strain rates of 10-3 1/s were taken from material specification sheets.
Taylor tests with VISAR interferometry provided the dynamic yield strength, hardening
and failure properties at strain rates of 3000 1/s. Equation of state properties, the Hugo-
niot elastic limit and spall strength at strain rates up to 106 1/s were determined form plate
impact tests. The yield limit over nine decades of strain rates is one key result of this char-
acterisation procedure. Fig. 5 shows no significant strain rate sensitivity of the XH129
armour steel with respect to the yield points. The data for a softer HZB-L armour steel ex-
hibiting strong strain rate dependence is given for comparison purposes. The measure-
ments provided input data to constitutive models (see Table 1).
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Table 1: Derived material data for the
amour steel layer (XH129)

Equation of State
Mie-Grüneisen / Shock

Strength Johnson,
Cook [6]

ρ g/cm3] 7.81 G [GPa] 81.0
Γ [-] 1.93 A [GPa] 1.3

cB [m/s] 5044 B [MPa] 753.4
S [-] 0.3238 n [-] 0.42

Tref [K] 300 C [-] 0
cv [J/kgK] 420 m [-] 0.822

Failure Tmelt [K] 1800
σfail,11 [GPa] 10 εfail,11 [-] 0.65
σfail,22 [GPa] 5 εfail,12 [-] 0.5

Y = 24.2 Ln(de /dt ) + 798.36
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Figure 5: Strain rate sensitivity of the front
plate armour steel in comparison to a softer
quality [4,5].



NUMERICAL SIMULATION OF THE LIGHT ARMOUR 
EFFICIENCY

The material data described above forms the basis for finite element simulations with
explicit time integration of the composed armour structure. The commercial hydrocode
AUTODYN-2D and 3D [7] was used for all simulations shown below. A cell length of
one millimeter is chosen for all components. The liner layers are modeled explicitly by
shell elements (plane stress). The ‘master-slave’ contact algorithm with Coulomb friction
of 7% handles the interaction in the penetration zone. Erosion at strains shortly above the
failure strains describes the tunnelling process.

Rigid boundary conditions are applied to the steel and the aramid layers as in the ex-
periment. The transition from penetration to perforation happens at early stages (before
200 µs, see Fig. 6, right) when the edges of the plate have not yet interfered. Conse-
quently, axisymmetric calculations can be used for the ballistic limit analysis.

Figure 6: Liner catching the projectile (left, 3.25 ms, 5 layers), Perforation (right, 3.25 ms,
21 layers); Steel plate failure mechanisms, plug formation, projectile erosion and frag-
ment deceleration by the liner.

Figure 7: (Left) Liner effect on limit areal density; (Right) Liner bulging in experiment
and simulation.
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Plugging of the steel target plate and the erosion of the blunt projectile are qualitati-
vely reproduced in the simulations (see Fig. 6). Although local spallation occurs, the do-
minant failure mechanism is excessive shearing. The formation of ring fragments at
higher velocities [1] is underpredicted. Meshless techniques might allow to simulate the
separation from the surrounding plate without mass losses from numerical erosion. Ne-
vertheless, the ballistic limit of the monolayer steel target is calculated in good agreement
with the experiments (see Fig. 7, left, liner thickness = 0).

The ballistic limits of bi-layered configurations are generally well reproduced, rang-
ing from 7.9 to 13.5 mm steel and 5 to 21 layers of aramid weave (2.4 to 10 mm). Plotting
in Fig. 7, left, the areal weights for ballistic limit velocities from 800 to 1200 m/s over the
different thickness demonstrates the qualitative and quantitative protection effect. Yet, the
time resolved liner deformation is underpredicted. Fig. 7, right, shows the experimental
bulging height only correctly calculated for 5 liner layers.

SUMMARY AND PERSPECTIVES

Design assessment by numerical methods of light weight armours consisting of metal-
lic front plates and cloth liner is generally possible. Precondition is a thorough characteri-
sation of the component materials by well defined high strain rate experiments. Methodo-
logies for metallic materials were demonstrated earlier [4,5] and applied to derive model
parameters for the front armour material. Improvements are possible with respect to the
formation of ring fragments. 

Employing the large data base of different test types on aramid weave [2], the biaxial
tension test turned out to be the most important characterisation experiment for woven li-
ners. Assuming transverse isotropy, simple linear elastic and elastic-plastic hardening
models together with strain failure criteria were chosen in the study. The application to
the complete armour configuration proved to well reproduce the ballistic limits over a
wide range of configurations. Discrepancies were noticed comparing the liner bulges
close to the ballistic limit and should be studied in future analysis.
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