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FINITE ELEMENT DESIGN MODEL FOR BALLISTIC
RESPONSE OF WOVEN FABRICS

J. W. Simons, D. C. Erlich and D. A. Shockey

SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA

A computational capability isdescribed for designing lightweight fabric barrier
systems to protect aircraft against fragments from an engine burst. A model of
the deformation and failure of yarns and woven fabric under impact was deve-
loped, using data and observations from experiments. When implemented in
the shell elements of the LS-DYNAZ3D finite element code, the model compu-
ted residual energies of fragments accelerated against fabric targets in agree-
ment with measurements from laboratory gas gun tests. Computational simula-
tionswith thismodel can assist the engineer in specifying such design variables
as yarn pitch, number of fabric plies, gripping conditions, and loads applied to
the supporting structure.

INTRODUCTION

Lightweight ballistic barriers installed in the fuselage wall of commercia aircraft
could protect flight-critical components from uncontained engine fragments. Under Fede-
ral Aviation Administration sponsorship, SRI is evaluating several candidate materials
and devel oping acomputational capability for designing efficient barrier systems. Descri-
bed here is amodel to predict the response of advanced polymer fabrics to impact from
fragments of various mass and velocity. The model is intended for use as an engineering
design tool for engine fragment barriers.

BACKGROUND

We are aware of previous theoretical and computational models for the ballistic re-
sponse of fabrics. Taylor and Vinson [1] describe amodel that treats fabric asavery flexi-
ble isotropic plate. However, this formulation ignores the directional properties of the
yarns. Several authors [2-4] model the fabric as an assembly of flexible fibers intercon-
nected at nodal points. Increasingly sophisticated models of this type have been develo-
ped that include contact between plies and slippage between yarns [5]. Johnson et al. [6]
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use a combination of bar and shell elements arranged in an orthogonal grid. Others have
used full three-dimensional finite elementswith smeared properties[7-8].

In the previous International Ballistic Symposium, we presented a micro-mechanical
model that treated explicitly the deformation and failure behavior of individual yarns
when the fabric was impacted [9]. To ensure the model would be true to the physical pro-
cesses induced in the fabric by fragment impact, we examined yarn and fabric geometry,
performed static and high-rate experiments, measured stress-strain and failure behavior,
and wrote mathematical expressions describing the data and observations. The resulting
model, when implemented in LS-DYNAS3D, predicted the outcome of a ballistic event in
detail.

Because of the detail included in the model, the results are especially useful to devel-
opers of ballistic fabrics. However, because of the large amount of computational time re-
quired to simulate impact response of alarge area of fabric, the model was not practical
for engineersresponsiblefor designing barriers. Therefore, we formulated ashell element
version of the model, seeking computational efficiency, but retaining the important phy-
sics. Our objective wasto allow evaluation of design variables such asyarn pitch, number
of fabric plies, gripping conditions, and |oads applied to the supporting structure.

DESIGN MODEL DESCRIPTION

The design model uses an orthotropic continuum formulation in which the two ortho-
gonal local coordinate directions correspond to the orientations of the yarns. We use mea-
sured values for thickness and areal density. We calculate the Young's modulus
(dyne/cm?2) in the two orthogonal directions along the yarns by taking the measured yarn
load at 1% strain, multiplying by the pitch, and distributing the load over the fabric thick-
ness. The shear modulus in all directions is assumed to be 10% of the Young's modulus
(needed for numerical stability), and the Poisson’sratio isassumed to be zero in all direc-
tions. The fabric density is calculated by dividing the measured areal density by the mea-
sured fabric thickness. For multiple plies, the fabric thicknessis the number of pliestimes
the single layer thickness; the modulus and density values remain the same. Because of
gripping considerations, this model assumes that, for a multi-ply target, the fabric yarns
are all aligned in the same directions (e.g., 0 and 90 degrees). Calculated parameters for
the constitutive model arelistedin Table 1.
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No.of Pitch | Thickness | Areal Density | Force @ 0.01 Modulus Density

Plies (ypi) (mm) (g/cmz) (dyne) (dyne/cmz) (g/cms)
1 30 0.15 0.0130 2.00x 10° 5.25x 10" 0.867
1 35 0.19 0.0158 2.34x10° 484 x10" 0.832
1 40 0.23 0.0185 2.67 x 10° 457 x 10" 0.804
1 45 0.27 0.0219 3.00 x 10° 438x10" 0.811

Table 1: Model Parametersfor Zylon

FAILURE MODEL

Fig. 1 shows the load-stroke response of a single ply of Zylon fabric in a quasi-static
penetration test gripped on two edges. In thistest, described in [10], afragment simulator
is pushed quasi-statically through a gripped specimen of fabric. The fabric demonstrates
severa failure mechanisms, as annotated in the figure. First, at a load of about 500 Ib,
yarns around the fragment rupture in what we call a*“local failure” mode, resulting in a
significant load drop. Next, yarnsremote from the impact site begin to separate, i.e., a“re-
mote failure” mode, which resultsin a steady increase of theload. Finally, yarnsalong the
ungripped sides begin to pull out, resulting in anearly linear load drop to zero.
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Figure 1: Fabric responsein aquasi-static penetration test.
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We did not attempt to model these failure mechanisms explicitly, but instead modeled
the overall response with abilinear curve, as shownin Fig. 1. We assume the response for
the material is elastic-plastic with linear hardening to failure in the two orthogonal direc-
tions corresponding to the yarn directions. By fitting the results of the gas gun tests, the
yield stressis set to 12.0 x 10° dyne/cm? with 20% strain hardening. The failure criterion
is based on accumulated plastic strains in the two directions. The materia fails when
strains in both directions exceed a specified limit (i.e., yarnsin both directions must fail
before the fragment can penetrate). The limit values for strain, which depend on the num-
ber of plies, arelistedin Table 2.

No. of Plies 1 2 3 4 5 6
Limit Strain | 0.035 | 0.060 | 0.085 | 0.110 | 0.135 | 0.150

Table 2: Limit Values of Strain

GAS-GUN TEST SIMULATIONS

We performed simulations using the design model for 15 gas-gun tests. The testsin-
cluded 15-cm-square Zylon targets from 30 to 45 yarns per inch (ypi), from 1 to 6 plies,
gripped on two edges and four edges, with arange of pitch and roll angles. Table 3 lists
the details of the 15 tests along with the cal culated and measured residual velocities of the
fragment and the energy dissipated by the target. For calculations in which the fragment
did not penetrate the target, the residual velocity was set to zero. Fig. 2 shows the calcu-
lated response for Test 58, a single ply of 40 x 40 ypi Zylon gripped on two edges. The
25-g fragment simulator had an impact velocity of 80 m/s, aroll angle of 16 degrees, and
apitch of 1 degree. Fig. 2 shows snapshots of the computed response at 0.10-msintervals.
As seen in Fig. 2(c), the deformation wave reaches the target edges at about 0.20 ms. In
the simulation, the left and right edges are held and the upper and lower edges are not
held. As shown in Figure 2(e) the fragment begins to penetrate at about 0.4 ms and is
nearly through thetarget at 0.5 ms, as seen in Figure 2(f). The calculated residual velocity
of 38 msisabout 10% less than the measured velocity of 42 ms, indicating that the model
target was stronger than the actual target.
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Table 3: Design Model Calculations

Residual Dissipated
Velocity Energy (J)
Impact

Test | Sides Pitch| Mass | Velocity | Test |Model |KE total Error

no. | Held |Plies| (ypi)| (g) (ml/s) (m/s) | (mls) J) Test |(Model| (% of KE)
49 2 1 35 | 25 52.0 0 5 33.8 33.8| 335 -0.9
39 2 1 30 | 25 79.5 45 48 79.0 53.2| 50.2 -3.8
47 2 1 35 | 25 80.0 49 52 80.0 49.7| 46.2 -4.4
58 2 1 40 | 25 80.0 42 38 80.0 58.2| 62.0 4.7
71 2 2 30 | 25 95.0 20 0| 112.8| 107.8|112.8 4.4
61 2 3 30 | 96 79.5 0 0| 303.4| 3034|3034 0.0
66 2 1 30 | 96 83.0 75 72| 330.7 60.7| 81.8 6.4
67 2 2 30 | 96 83.0 53 56| 330.7| 198.4|180.1 -5.5
25 4 1 35 | 25 775 59 45 75.1 31.6| 49.8 242
13 4 1 45 | 25 78.0 29 35 76.1 65.5| 60.7 -6.3
20 4 1 30 | 25 79.0 62 54 78.0 30.7| 41.6 13.9
24 4 1 40 | 25 79.0 50 40 78.0 47.4| 58.0 13.6
26 4 1 30 | 25 82,5 63 59 85.1 355| 41.6 7.2
29 4 4 | 40 | 96 79.0 28 0| 299.6| 263.3|299.6 12.1
32 4 6 | 40 | 96 79.0 0 0| 299.6| 299.6|299.6 0.0
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Figure 2: Design model simulation for gas gun test 58.

The last column in Table 3 is the error in energy absorbed for the simulation, calcu-
lated by normalizing the difference in the calculated and measured dissipated energy by
the total kinetic energy of the fragment. The average of these errors is 4.4% with a
standard deviation of 8.7%. The design model provides a close estimate of the dissipated
energy, but tendsto overpredict results for tests with four edges gripped. Fig. 3 compares
the calculated and measured energy dissipated in all thetests. A linear fit through the data
passing through the origin gives aslope of 1.03 and an R, value of 0.98.
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Figure 3: Comparison of measured and cal cul ated dissipated energy.

LARGE-SCALE TESTS

We are currently evaluating the model’s ability to simulate full-scale balistic tests of
fragments impacting fabric barriers in the fuselage wall. The barriers are approximately
50-cm-sguare sections of Zylon fabric, held to the aircraft frame and longerons by mounts
at thefour corners. Asshown in Fig. 4, thefabric in the testsis draped asit would be when
installed in the interior structure of an aircraft. Sharp titanium fragments approximately
8x 10x 0.6 mm and weighing 175 g are launched at vel ocities up to 200 m/s. Fig. 3 shows
an example of the calculated response of the fabric barrier for one test configuration. The
fabric causes the fragment to tumble and prevents penetration. Comparisons are being
made between the measured and calculated fragment/fabric interaction, including defor-
mation and failure of the fabric and the tumbling and trajectory of the fragment.
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Figure 4: Simulated response of fabric for full-scal e fragment impact test.
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SUMMARY

The model simulates well the response of the fabric to impacting fragments in the set

of gas gun tests described, but does not account for failure mechanisms such asyarn slip-
page in the fabric or fabric pull-out at attachments. We are currently evaluating the ability
of the model to simulate full-scale tests of fabric barriers. When fully developed, the mo-
del will serve as atime- and cost-efficient tool for the engineer in designing lightweight
barrier systemsfor commercia aircraft.
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