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The paper dealswith the use of ballistic experiments and numerical analysisto
the development of some glass laminates which should exhibit protective effi-
ciency against projectilesfired from the small arms. The mechanical propertries
of single layers have been evaluated by the use of different methods of the high
strain ratestesting, namely bathe use of the Hopkinson Split Pressure Bar Test.
The ballistic experiments have been used for the eval uation of some parameters
of the failure criteria. The next numerical ssimulation performed by the LS
DY NA 3D finite element code led to some results on the ballistic efficiency of
the glasslaminated targets.

INTRODUCTION

Glass material have generally poor mechanical properties compared with crystalline
ceramics and these materials exhibit much more lower ballistic performance against to
projectiles. Thisisaconseguence of the amorphous structure of glass. In order to improve
ballistic resistance the glass laminates are designed. The development of such layered ar-
mours may be cost effectively only if we use of some appropriate numerical simulation
[1]. The use of numerical code than need the very good knowledge of the material proper-
ties of singlelayersat strain rates corresponding to those during the ballistic impact. Even
if there are many papers dealing with the determination of the glass properties under the
conditions mentioned above [2-4] owing to a great scatter of these datait is necessary to
perform measurement of these propertiesfor every proposed material .

In the given paper we have focused on the laminated glass where layers of glass
changed with the layers of different polymeric materials. The numerical simulation has
been used for the prediction of the balistic performance of these targets against three
kinds of small arms projectiles.
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EXPERIMENTS

For the investigation we have used three different projectiles which are shown in
Figs.la—c.

Figure 1a: Projectile A. Core Fe covered by red brass (dimensionsin mm).
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Figure 1b: Projectile B. Core Pb covered by red brass (dimensionsin mm).
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Figure 1c: Projectile C. Core Pb covered by brass (70:30) (dimensionsin mm).
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The configuration of theglasslaminatesisdescribedin Table 1.

Table 1: The configuration of the glass laminates. (PVB, PUR,PET and PC denote diffe-
rent polymeric materials)

ORDER OF THE
LAYER FROM THICKNESS
TARGET THE IMPACTED MATERIAL (mm)
FACE
1 GLASS 6
2 PVB 0.76
3 GLASS 8
I 4 PVB 0.76
5 GLASS 8
6 PVB 3
7 GLASS 5
1 GLASS 5
2 PVB 0.76
3 GLASS 3
4 PVB 0.76
I 5 GLASS 9.5
6 PVB 0.76
7 PUR 0.60
8 PVB 0.76
9 PET 0.25
1 GLASS 5
2 PVB 0.76
3 GLASS 5
I 4 PVB 0.76
5 GLASS 5
6 PUR 1.20
7 PC 4
1 GLASS 4
2 PVB 0.76
3 GLASS 4
4 PVB 0.76
v 5 GLASS 8
6 PVB 0.76
7 GLASS 8
8 PVB 0.76
9 GLASS 6

The mechanical properties of the material of the single layers as well as projectiles
have been evaluated by the using of the Hopkinson Split Pressure Bar Test, by the Taylor

test and by the plateimpact test. Asaresult we have obtained:
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ProjectileA: density p = 7800 kg/m?3, Elastic properties: Young smodulus E = 2.1 10°
MPa, Poisson ratio v = 0.28. Elastic behaviour up to strain 0.002. Plastic behaviour: o=
(E/150).(e-0.002). The strain rate behaviuor is described by the Cowper Symonds consti-

tutive equation:

1
P

de
dt

g=0y(¢)|1+

Where o4(€) is the dependence of the flow stress on the strain at the quasi static |oad-
ing and D and p are material parameters describing the influence of the strain rate.
D=40s? p=5.

Projectile B (Pb): density p = 11200 kg/m®, Elastic properties: Young s modulus E =
1.6 10* MPa, Poisson ratio v = 0.44. Elastic behaviour up to strain 0.002. Plastic beha-
viour: o= (E/300).(e-0.002). The strain rate behaviour is described by the Cowper Sy-
monds constitutive equation, D =40s?, p=0.8.

Glass: density p = 2500 kg/m?, Elastic properties: Young s modulus E = 7.16 10*
MPa, Poisson ratio v = 0.227. Elastic behaviour up to strain 0.002. Strain behaviour for
higher strain: o= (0.98E).(e-0.002). The strain rate behaviour is described by the Cowper
Symonds constitutive equation, D = 1000 s, p = 100.

PVB (rubber like material): density p = 1070 kg/m?, Elastic properties: Young s mo-
dulus E = 2.6 10° MPa, Poisson ratio v = 0.435. Elastic behaviour up to strain 0.1. Plastic
behaviour: o= (E/400).(e-0.1). The strain rate behaviour is described by the Cowper Sy-
monds constitutive equation, D =80s™, p=6.7.

PC material: density p = 1200 kg/m®, Elastic properties: Young s modulus E = 2.3
108 MPa, Poisson ratio v = 0.38. Elastic behaviour up to strain 0.15. Plastic behaviour: 0=
(E/100).(e-0.15). The strain rate behaviour is described by the Cowper Symonds constitu-
tiveequation, D =650s™, p=75.

PUR material (superelastic): density p = 1200 kg/mq, Elastic properties: Young s mo-
dulus E =49 MPa, Poissonratio v = 0.45. Elastic behaviour up to strain 0.2. Plastic beha-
viour: o= (E/200).(e-0.2). The strain rate behaviour is described by the Cowper Symonds
constitutive equation, D =360 s, p=43.

PET material: density p = 1390 kg/m?, Elastic properties: Young s modulus E = 3.6
108 MPa, Poisson ratio v = 0.37. Elastic behaviour up to strain 0.07. Plastic behaviour: 0=
(E/100).(e-0.07). The strain rate behaviour is described by the Cowper Symonds constitu-
tiveequation, D =846, p=87.

In the next step we performed ballistic experiments with the target | (see Table 1) in
order to find some reliable criteria of the material failure. From the experiments, see [5]
for details, we found that the best criterion of the material failure is the criterion of the
maximum principal strain. According to thiscriterion thefailure of the materialsoccursif

£2E max

Where € is the maximum principal strain and gy« 1S the principa strain at failure.
From the experiments we have found that the principal strain at the failure did not depend
on thekind of the projectile. The values of these strainsaregivenin Table 2.

1442



1443

¢
£ 2589

) 2583 T

2 o0 S5g= W __* I AT .ﬂ_.__

6l - = sc§ :_____:___“ﬁ.“__..____ IV

z| § £33 & FER R

= 3 ~ mmmw q_._rﬂ__* A Y

2§ lof  gows i il

gl 2 S ZeRo D

£l g =4S I

AR 5 g < R

7 m | o .m o m = = T

gl £ =) E8S 2 3

g £ h oBE > =

£ m 23 E -

g ) = C % T —

1|5 BB z w3 B LR

ol 2 o @) 8o = |

2| g = g=f% = | |

B = ” L c m I

gl 8 M Ss8s o TV TAUWUAVTLAAUAALLIAY

2l 5 |o 0 o 63g8 b I LTI LY

g 2 B3| = ®gEs = g AT

g| g A B B8 F LY ﬁ ALY

2| 7 |8 o §Seg @ B ‘| ._.___E__Ep W

£l 8 Bl 2 $Z=8y . L LR
2 |0|c < wf 5Q i ™ —
2 S “Esg2 - o AR
[ = 59 879
N ST ® 2EBEp 3
o |Zf = cogsl
e =8 Z SBEF @

Figure 2: The penetration of the projectile Cintotarget I.
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Figure 3: The dependence of the projectile velocity (in m/s) onthetime (inms).

The results of the numerical simulations, which were obtained using of theLSDY NA
3D finite element code are:
Target | —projectile C —impact velocity 440 m/s.
Number of nodes: 28 901
Number of elements: 26 064 (864 projectile)
Real time: 0.17 ms
CPU: 10 hours 11 minutes 36 seconds
Results: no perforation, depth of the penetration 24.28 mm.
Target || —projectile C —impact velocity 440 m/s.
Number of nodes: 40 250
Number of elements: 36 864 (864 projectile)
Real time: 0.1 ms
CPU: 2 hours 35 minutes 296 seconds
Results: perforation, residual projectile velocity is 252.34 m/s (experimentally found
231 m/s). The protective efficiency of the PET and PUR layers seemsbe negligible.
Target |11 —projectile C —impact velocity 440 m/s.
Number of nodes: 30 162
Number of elements: 27 264 (864 projectile)
Real time: 0.20 ms
CPU: 5 hours 11 minutes 1 seconds
Results: perforation, residual projectilevelocity is54.92 m/s
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From the results presented in the given paper and collected in our report [5] one may
conclude that the connection of material testing, limited number of the ballistic experi-
ments and numerical simulation can lead to the effective development of the glass lami-
nates which exhibit very good protective properties against to the small arms projectiles.
The most of numerical results have been confirmed by the experiments. In the given pa-
per we have modeled the proj ectiles without the cover. Our preliminary computational re-
sults show that this approach istoo conservative. It means the ballistic performance of the
targets considered in this paper may be better that that reported here. As a critical point
seems be the model of the material failure. The next research of this problem seems be
desirable.
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