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INTRODUCTION

Wood is an anisotropic cellular material such as honeycombs, metal ring systems,
polymeric foams and some others. These materials are very convenient for the design of
impact energy absorbers and as core materials in lightweight structures. Their behavior
under static loading is well summarized in the book [1].Wood in particular has also been
used as a protective material for high velocity impact events for many centuries [2,3] and
is very often used as an impact energy absorbing material at the design of the transporta-
tion flasks for nuclear fuel etc. There have been only a few  systematic studies of the be-
havior of wood under high rates of loading following from some impact events [2]. Re-
cently the extensive impact test data have been obtained for some wood species [4,5].
These data have been used for the development of the models of the  macro-deformation
and micro-deformation modes resulting from the dynamic uniaxial compression at the
specimen impact. 

The present paper focuses on the other kind of the dynamic loading which is the ef-
fect of the detonating explosive. In order to have a chance to explain the observed experi-
mental results, the data on the wood behavior under dynamic loading have been obtained. 

Paper deals with the experimental and numerical study of the wood beam re-
sponse to the explosive loading. The beams made from the Oak, Beech, Pine,
Spruce and Birch have been tested.  The mechanical properties of these woods
at dynamic loading have been determined. Two methods, Hopkinson Split
Pressure Bar Test and Charpy Impact test have been used. The minimum deto-
nation pressures at which no damage occurs has been evaluated. These thick-
ness are in a reasonable agreement with the mechanical properties determined
by the tests mentioned above. The numerical simulation of these experiments
has been performed using of LS DYNA 3D finite element code. Results of the
numerical simulation s are in reasonable agreement with the experimental ones,
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MATERIAL AND EXPERIMENTAL PROCEDURE

For the experiments the following wood species have been selected: Oak, Beech, Pine
and Spruce. The following material properties of these woods have been determined:
1. The wood strength  properties at static loading in tension, pressure and in bending.
2. The mechanical properties under dynamic three point bending using Charpy test.
3. The mechanical properties at high strain rates using of the Hopkinson Split Pressure 

Bar Test (HSPBT)
The free supported beams (100 x 100 x 1500 mm) made from the woods mentioned

above have been loaded by the explosive charge. The layer of PMMA has been inserted
between the charge and the beam in order to reduce the amplitude of the loading pressure
pulse. The time dependence of the loading pressure has been recorded using of the man-
ganin gauges. At this study the minimum amplitude of the pressure pulse at which no
beam damage occurs has been found. The possibility of a numerical simulation  of given
experiments has been also studied. The finite element code LS DYNA 3D has been used.
This code enables to simulate the course of the shaped charge detonation and the interac-
tion of the detonation products with the wood elements (plates and beams). The numerical
simulation is long – term work which is still in progress. In the given paper the prelimi-
nary results for the plates and beams made from the spruce and birch wood. 

EXPERIMENTAL RESULTS

Mechanical properties at the static loading.
The testing of wood under static loading in tension, pressure and in bending represents

a standard procedure. Owing to this fact, no description of these experiments is presented.
The results of this testing are given in Table 1.

Table 1. Strengths of the tested woods. (ME – modulus of elasticity in MPa, MR – modu-
lus of rupture in MPa)
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WOOD Density

(kg/m3)

Strength
in

tension ||
(MPa)

Strength
in

tension
⊥  (MPa)

Strength
in

pressure
|| (MPa)

Strength
in

pressure
⊥  (MPa)

MR ME
Tough

ness

J/cm2

Spruce 440 84 1.5 30 4.1 60 9 100 4.9
Pine 530 102 2.9 54 7.5 98 11 750 6.9
Oak 700 108 3.3 42 11.5 116 11 600 7.4

Beech 720 130 3.5 46 7.9 104 13 100 7.8
Birch 730 134 6.9 50 10.8 134 16 100 6.6



Charpy test.
The specimens of dimensions 10 x 10 x 55 mm have been used – see Fig. 1. The speci-

mens were loaded across the growth rings. The impact energy of the hammer was 101.8 J
and corresponding impact velocity 2.738 m/s. The record of the loading force F as the
function of the specimen displacement s has been obtained for each specimen. From this
record it is possible to evaluate many quantities describing the mechanical properties [6].
In the given paper we evaluated only the maximum of the load Force F – Fm and  the
energy absorbed by the specimen during the loading – W. Between  30 and  50 specimens
were tested for each wood. The results of the loading are given in Table 2.

Table 2. The main properties of the specimens tested using of the Charpy hammer. (vx is the
variation coefficient, P 0.95 denotes the interval where the data lie with the probability 95%.)

Fig.1. Specimen for the testing of wood under dynamic three point bending.

Hopkinson Split Bar Tests.
From these tests, see [7] for details, the dependence of the dynamic crushing stress on

the strain rate has been evaluated. The results are displayed in Fig. 2.  The experimental
data can be fitted by the linear function:

σ = σΒ + α.ε (1)

where s is the dynamic crushing strength and e is the strain. The dot above the symbol de-
notes its derivation with the respect to the time. The parameters of this relation are 
given in Table 3.

1449

Model of the Wood Response to the High Velocity of Loading

WOOD Moisture
content

(%)

Fm
(kN)

P 0.95 Vx
(%)

W
(Nmm)

P 0.95 Vx
(%)

Spruce 8 1350 1315-1401 10.7 4029 3519-4539 42.9
Pine 9 1791 1767-1827 5.3 6708 6286-7130 19.7

Beech 9 1845 1763-1953 8.3 3562 3120-3678 20.1
Oak 8 1996 1883-2109 16.5 3037 2705-3369 32.0

Birch 7 2311 2198-2424 13.5 7146 6791-7501 13.7



Table 3. The parameters of the Eq. (1).

Fig. 2. The dependence of the crushing strength on the strain rate.

In the experiments described in the previous section the evaluation of the loading
stress pulse parameters at which no fracture of the beam occurred has been performed. 

The reduction of the stress pulse amplitude, maximum of pressure pm, has been perfor-
med by the inserting of the PMMA layer between explosive charge and the beam surface.
The determination of the minimum values of pm represents 8–10 experiments. The values
of the stress pulse amplitudes at which no beam fracture occurs are given in Table 4.
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WOOD σB (MPa) α
(MPas)

Minimum of the
strain rate

Maximum of the
strain rate

Spruce 74.34 0.0271 400 1100
Pine 78.37 0.0406 485 1150

Beech 86.72 0.0464 490 1140
Oak 78.00 0.0657 532 1180

Birch 113.00 0.0321 560 1300

values of the stress pulse amplitudes at which no beam fracture occurs are 



Table 4. Values of pm of the stress pulses at which no fracture occurs.

The values of the given pressure are much more higher in comparison with the values
of the strength at the static and dynamic loading. 

NUMERICAL SIMULATION

The numerical simulation of the problem shown in Fig.1 has been performed using fi-
nite element code LS DYNA 3D. The wood has been considered as the orthotropic elastic
solid with a failure. The failure is achieved if a very simple criterion is yield:

ε1 ≥ εmax,
where ε1 is the maximum principal strain, and εmax is the principal strain at the failure.
The elastic constants have been determined from the ultrasound measurements [8]. 

The failure strain has been chosen as 5%. For higher values of this strain no complete
fracture of the beam occurred. 

The behavior of the TNT detonation gas products, the Jones-Wilkins-Lee (JWL) equa-
tion of state has been used, together with the programmed burn model – the detonation velo-
city has been assumed to be 6930 m/s [9]. The JWL equation has the form:

Where p is the detonation pressure, V is the relative volume and E is the internal
energy density. The parameters has been taken from [10]:

A=272.7 GPa, B= 3.231 GPa , R1 = 4.15, R2 = 0.95, ω= 0.3
Initial density of the explosive was 1630 kg/m3. 

The finite element model of the charge and the beam is introduced in Fig. 3.

Fig. 3. Finite element model of the experiment .

With the respect to the real geometry the 1/4 geometry has been used. 
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WOOD Minimum values of pm
(MPa)

Spruce 560
Pine 680

Beech 760
Oak 840

Birch 1060
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In the first step the maximum of the strain at which the beam failure occurs has been
determined. In our previous paper [11] we have found that the failure of the spruce wood
occurs at the strain 11%. If  we use this value we can see that no damage of the beam oc-
curs – see Fig. 4.

Fig. 4.  The final shape of the spruce beam (time t = 8 ms).

The experiments showed that all beams were broken into two parts. By the gradually
decreasing of this strain we achieved the value of 5%. Just above this strain no failure oc-
curs. In Figs. 5–6 the development of the beam failure is shown.

Fig. 5. Damage of the spruce beam at the time 50 µs.

Fig. 6. Damage of the Spruce beam at the time 3 ms.

Even if the model of the wood behavior is very simple the resultant beam damage is
very similar to the experimentally observed beam fracture. If we used the Tsai-Wu model
[12] of the wood damage as in our previous paper [13] the numerical analysis led to the
results that the complete fragmentation of the beam should occurs. It means this model is
inconvenient for the analysis of the given experiment.
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decreasing of this strain we achieved the value of 5%. Just above this strain no failure
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