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INTRODUCTION

The penetration of a shaped charge jet into a semi-infinite homogeneous target de-
pends on the cumulative length of jet elements that interact effectively with the bottom of
the hole. It would improve our understanding of the process if we knew which portions of
the jet actually contribute to penetration and what associated circumstances lead to the
final observed penetration depth.

It is common during the investigation of new shaped charge designs to take flash
radiographs (x-rays) of the jet at a longer standoff than at the one of interest for perfor-
mance testing, for example at 20 charge diameters (CD) instead of 6 CD. These jet cha-
racterization x-rays provide images of individual particles that give critical information
about the jet including its speed, mass, breakup time, straightness, and total length, that
are not readily available at shorter standoff. One of the most important observations to be
accounted for concerns the total particle length evident in an x-ray of a fully particulated
jet. This total length, if only adjusted for jet/target relative density according to hydrody-
namic penetration theory [1], almost always corresponds to a much greater penetration
depth than is actually achieved in the target. A partial explanation, valid for tests conduc-

Every shaped charge jet has a last particle that contributes to penetration depth.
Estimating the speed of this particle, or “cutoff” velocity of the jet, is a key fac-
tor in predicting penetration performance for a given shaped charge. Many of
the traditional penetration models use an assumed random distribution for devi-
ations in drift speed to determine if individual particles contribute to penetra-
tion. This paper describes an alternate, non-statistical approach for modeling
cutoff where the penetration process is viewed as ending fairly abruptly in pre-
cision devices once the jet collides with the side of the hole. Direct comparison
between particles in flight and their individual contributions to penetration
depth are made. The importance of local hole shape (“scalloping”) is discussed,
and a simple empirical cutoff model that agrees with RHA penetration data at
short and long standoff is described.
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ted with the targets positioned at short to intermediate standoff, is that the early part of the
jet did not have sufficient time to reach the full particle length observed in the longer stan-
doff x-ray. Usually this adjustment will account for some, but not all, of the discrepancy
as shown in Table 1. This suggests some of the jet particles do not contribute effectively to
increasing penetration depth.

Table 1. Examples showing substantial portion of jet is not used to increase penetration
depth

Many of the traditional shaped charge jet penetration models [2] attempt to account
for the apparent ineffectiveness of some of the jet particles by assuming that there is a ran-
dom-type distribution in lateral “drift” speed along the jet. This causes sufficiently way-
ward particles to hit the side of the penetration hole and not contribute to depth, leaving
the rest of the jet more or less undisturbed. Several limitations exist with this approach.
First, it is our experience that jets produced from precision (low-drift) shaped charges
normally do not exhibit random lateral deviations from particle to particle, but more com-
monly show non-random, continuous deviations from centerline, along slightly “curved”
arcs for example. Second, analysis of particle interactions with the side of the target hole
indicates that particles arriving after an earlier collision event encounter interference. Fi-
nally, random drift models usually have difficulty in predicting penetration over a wide
range of standoffs without continuously changing some basic assumption for the jet, such
as its average drift speed. 

The present investigation suggests that an alternate explanation is more appropriate
for high-precision jets. It supports the idea that such jets achieve their penetration by
using particles from the tip down to a final “cutoff” particle, after which penetration ends
fairly abruptly. Spacing between the particles, which affects local hole profile shape, and
lateral particle drift are important in determining the cutoff velocity of the jet which in-
creases monotonically with standoff. This view accounts for all of the observed jet par-
ticle length in a straightforward manner, is consistent with other experimental data, and
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              CONDITIONS
Copper Copper

Type of Jet Jet 1 Jet 2

Standoff, CD 6.0 20

                   RESULTS
 Parameter    Penetration, CD

 Penetration if total particle length 9.5 11.9
 seen in jet x-ray contributed fully

 Penetration if jet length is adjusted 8.9 11.9
 for particle time of flight

 Measured Penetration Depth 7.7 5.9 



allows one to model penetration over a wide range of standoffs without making artificial
changes to the properties of the jet. 

EXPERIMENTAL DATA

Key experimental data supporting the idea of a sharp cutoff velocity for shaped charge
jets has come from tests where the target standoff was sufficiently long that the jet was
completely particulated prior to impacting an RHA target. Flash x-rays at various times
and viewing angles were taken to characterize the jet (particle speed, length, etc.). The
RHA blocks were sectioned to obtain a detailed hole profile. As Figure 1 shows, it is pos-
sible to clearly identify jet particles in the x-ray with their corresponding location in the
hole profile based on the unique sequence of particle shapes and lengths. In another test,
the full-length x-ray and cut-block data show that all of the particles from the tip down to
a last contributing particle were responsible for the penetration depth (Figure 2). The rest
of the particles in the jet that came after “cutoff” did not contribute appreciably to the fi-
nal depth. Time-of-arrival (TOA) data was obtained from timing screens placed between
the RHA blocks (Table 2). The velocity of the particle that penetrated the last RHA block
based on TOA data was consistent (usually within a few tenths of a km/s) with that obtai-
ned from the x-ray.

Figure 1. Scallops formed in RHA by spaced jet particles.

In cases where the cutoff velocity was observed to be much different than normal for a
given charge at a certain standoff, the jet exhibited some anomaly. When the jet tail was
noticeably off-line (or sometimes a large-diameter particle was present), higher than nor-
mal cutoff velocity resulted. On the other hand, a crooked jet tip could actually result in
an abnormally low cutoff velocity. In this case, however, the penetration depth was also
low since the front of the RHA stack had to be re-penetrated. As a consequence, the dis-
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tance to the bottom of the hole (and particle time of flight) was reduced and lower than
normal jet velocities contributed to the penetration.

Hydrocode analysis was performed using PISCES 2DELK [3] to model a few selected
particles in the jet. Their predicted penetration hole pattern (included in Figure 1) agrees
reasonably well the cut block data, and confirms the implicit assumption that each scallop
in the target is produced by one jet particle.
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Figure 2. Correlation of particles in X-ray with scalloped holes in target.

Table 2. Typical TOA data for RHA penetration test

TOA No. TOA Times, ms Vjet/Vtip, calc.

1 466.8 1
2 480.8 0.98
3 497.1 0.97
4 514.1 0.95
5 543.8 0.91
6 568.5 0.88
7 602.3 0.84
8 622.3 0.82
9 650.0 0.80

10 677.9 0.77
11 710.5 0.75
12 751.8 0.71
13           Penetration stopped between 12 & 13

Vcutoff/Vtip from X-ray = 0.68



The same sharp cutoff mechanism appears to apply in shorter standoff situations
where the penetration is characterized by continuous penetration in the beginning follo-
wed by particulated penetration at the end (Figure 3). This explains why normally, if
changes to the jet, e.g., in breakup time, are introduced above the known cutoff velocity
but below the continuous regime, penetration is affected. Conversely, if the changes are
made below cutoff, penetration is essentially unaffected.

Figure 3. Hole profile created by jet at intermediate standoff.

Cutoff velocity was determined for a variety of experimental jets and, in general, it
was observed to increase as standoff increased. Figure 4 shows this trend for a typical
copper trumpet liner design loaded with LX-14 explosive. Cutoff velocity is also affected
by the fabrication precision of the shaped charge, jet breakup time, jet speed, and jet/tar-
get dynamics. All of these factors influence the jet particle's lateral drift and interaction
with the side of the target hole that ultimately leads to termination of the penetration pro-
cess.

INTERPRETATION OF THE RESULTS

The one-to-one matchup of individual particles in the x-ray with the “scalloped” hole
pattern in the sectioned RHA blocks provides the most compelling evidence for the idea
of a sharp cutoff velocity for a shaped charge jet. Each particle above cutoff clearly con-
tributed to penetration depth. Particles below this effective cutoff velocity did not contri-
bute significantly to penetration. Instead, they were apparently consumed during the
smoothing or “reaming” of the hole, especially at the bottom. This is further supported by
the TOA data where the calculated particle velocity in the last block penetrated agrees
with the cutoff velocity obtained from the x-ray data.
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Figure 4. Variation of jet cutoff velocity with target standoff.

A mechanism for sharp cutoff is suggested from numerical simulations and from the
cut block data itself. Unless penetration is entirely continuous, a series of connected scal-
lops near the bottom of the hole can usually be seen (ref. Figures 2, 3). It is likely that the
scallops had much smaller entry holes during the penetration process (prior to erosion)
than are evident in the recovered RHA cutblocks. One possible mechanism contributing
to cutoff is that as the spacing between the particles increases, the entry holes in the scal-
lops are able to narrow down more, presenting a smaller opening for the next particle. At
some critical point, the entry hole is small enough relative to the drift of the next particle
that contact with the crater lip is made.

PISCES 2DELK was used to model incident jet particles that were off-center by some
fraction of their diameter and allowed to interact with a pre-scalloped hole pattern (Figure
5). These simulations were done assuming plane strain (εz=0) symmetry and are expected
to somewhat over-predict the full three-dimensional particle response. When the particle
drift is about 50–100% of a jet diameter off centerline, the collision with the hole opening
appears to be significant. The interaction in this case is predicted to be great enough to
cause the affected particle to ricochet to the opposite side of the hole and effectively
“block” or hinder further penetration. It is sometimes possible to actually see evidence of
this type of termination event in the cutblocks (Figure 6). These calculations, although
only qualitative, suggest that the scalloped edges play a significant role in terminating jet
penetration.
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PENETRATION MODEL

Based largely on data of the type presented here, an empirical sharp cutoff velocity
model has been developed by Hancock [4]. It imposes a cutoff criterion based on average
penetration speed, U, which decreases as the space between jet particles increases. When
the penetration speed falls below a certain minimum level, Umin, penetration is stopped.
The approach is an extension of constant Umin models [5] in that Umin is made a function
of lateral particle drift:

Umin = Uo(1 + bδr/rb)

where Uo and b are constants, δr is the radial particle drift, and rb is the jet particle radius
at breakup. This equation normalizes the drift to particle radius, instead of maximum or
average crater width, based on our observations that cutoff is sensitive to drift distances
which are on the order of particle size. This empirical model is able to provide reasonable
agreement with penetration data over a wide range of standoffs, as shown in Figure 7,
while keeping particle drift speed fixed.

CONCLUDING REMARKS

It should be emphasized that the data presented here supporting a sharp cutoff velocity
are for precision jets with low drift velocities, where penetration is repeatable to within a
few particle lengths. This simple picture does not necessarily apply to lower precision
charges, which have higher drift velocities and may be subject to complex re-penetration
scenarios.
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Figure 6. Evidence of jet particle 
ricochet near end of penetration.

Figure 5. Simulation of offset jet Figure 7. Comparison of Umin penetration
particles interacting with “pre-scalloped” predictions with data.
hole.
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