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A COMPUTATIONAL METHOD OF FAST SIMULATING
FULL-PHYSICS PROCESS OF SHAPED CHARGE

ZhongBo Fan, Xianlin Chen, Zhilu Yu, Yihong Hang, Zhen Dong
and Qijing Feng

Institute of Applied Physics and Computational Mathematics
P.O. Box 8009-15, Beijing 100088, P. R. China

A computation method of fast simulating full-physics process of shaped charge
is advanced, which is an Eulerian numerical method combined with the VMO
theory of jet element penetration and the model of Thomas' quasi-steady crater
formation during the quasi-steady penetration stage. The comparisons of its
computational results of exampleswith pure numerical solution of MEPH code
and experimental onesare given.

INTRODUCTION

The jet formation in shaped charge and the jet penetration to the target is a compli-
cated dynamic process, which is made by a strong blast load of short duration. At present,
only depending on numerical method, can it bewell investigated. Because the pure nume-
rical solutions require very advanced computer, therefore, it does not suit for 2-D engi-
neering optimization design of shaped charge. Recently, akind of computational method
has been devel oped in which numerical simulations are combined with analytical solution
in different stages, such asAUTODY N, etc. Most of them are based on Lagrangian me-
thod and are combined with PER analytical theory during liner collapse. It can speed up
the computation of the process of the jet formation, but it cannot speed up the computa-
tion of the process of the jet penetration to thick target, which spends enormous CPU
time.

This paper is based on Eulerian computational method and is combined with the
VMO theory[1] of the jet element penetration and model[2] of Thomas' quasi-steady cra-
ter formation during the quasi-steady penetration stage. This computational method can
exactly simulate the full-physics process for various shaped charges, and can solve the
contradiction between the computation accuracy and CPU speed. It can be extended and
applied to 2-D engineering optimization design of various shaped charges.
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1 NUMERICAL METHOD

Except special explanation, all signsarein accord with general recognition.
By using the finite difference method, the following 2-D non-steady elasto-plastic
hydrodynamic conservation equations in Eulerian cylindrical coordinate system are sol-

ved discretely.
d(F1) _108(F2) a(F3)
L dt r or i oz wF (1)
Vp ry u 0
P o P % | plaratlr @
u, ra, a4 0
et nc)2]  ow+ou-aqu)| |on+rou-au 0
Where 0 oy
Oy =—pO;+3;» 5:‘/':{1 i (3
.2 . _ yO(l_e/em) e<e,
p=lei(o-po)+ (K -1pei-2y/Ge, ). y=1"" e>e (4)
5y =2ule, +6 p/Bp)-, (5)
&, =0ou, [or, &,=0u, oz +0u,jor)2, &, =0u,]éz 6)
0, =0, =~{0u, [0z ~3u, [or)s,.. @, = @u, /32 2w s, - 5..)/2 @
4y = p(fk)(affk + acc)afk = |a“k/ak! —0u, [0k k= (r,z) (8)

If equivalent stress satisfies Mises, R. von yield condition, the computation for S
should be corrected; if e>e, then set §;=0 and y,=0; the reaction process of energetic
material isdescribed by Wilkins reaction speed function.

2 ANALYTICAL MODEL

2.1 Virtual Multi-Origin Jet element Penetration Theory

Virtual Single-Origin (VSO) element jet penetration theory can only be applied to
estimate the penetration problems of continuousjet with linear speed distribution.

For the jet with arbitrary energy distribution, it can be treated as L jet segments; the
speed distribution in each segment is linear approximately. If the influence of the jet
strength being considered simultaneously and assuming that:

A. the penetration of the broken jet element startsat Ty, from the m (n)-th element with
speed Vinn=Vp in the n-th segment,
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B. the influence of the gaps among broken jet segments on the DOP is offset by the
opposite influence of the segments stretches during the time from Ty, to itself joining pe-
netration on the DOPR,
then, we can easily extend from V SO theory to VMO theory including the broken jet pe-
netration by the recursive method, and obtain total DOPas

P=P +P, 9)

P = ZPN : +(h +ZPN .}[ ) -] (10)

n-z oS Se Jrmp - o-n) a1
y=lo/p,)"* (12)

Where, Vi isthe jet critical penetration velocity; Zbcr is the distance between Vb jet
element and V, jet element at the moment when head jet impacting target. For the L-th jet
segment, we have

P,{hﬁga,} VilVii) ‘/’~1] (13)
[h, +2PL : [ il 1]/1/” (14)
h hy=h-z, (15)
=m™(l) MZI Zoa Vo) (16)

Where, (7, t;) and h; are the VO-coordinate and the Virtual Standoff. m(l) is the num-
ber of jet elements. z;, and V), arethe axia coordinate and speed of each jet element. Vyq
and Vyyy are speeds of head and end elements respectively. Pj(Pg=0) and T, are the total
DOPand penetration time.

2.2 Model of Quasi-Steady Crater Formation
We adopt the efficiency model of Thomas' quasi-steady crater formationl2l. After the
distribution of kinetic energy of jet is computed by 2-D Eulerian code, and the DOP of jet

element be calculated by 1-D VMO theory, then according to the Thomas model, we can
obtain the corresponding diametrical radiusrt of penetrated hole as

(/r) = p V2 RA+C V] (18)
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Where, the resistance R of target and the dynamic stretch coefficient C; of jet can be
determined by experimental and analytical methods'Z.

3 LINKAGES AND STAGNATION CRITERION OF
PENETRATION COMPUTATION

When the motion characteristic of the fluid space-time distribution that is described
by numerical solution satisfies those physical assumptionsin VMO and Thomas' analyti-
cal models: i.e. there is no momentum exchange among jet elements, and they are all ap-
proximately in quasi-steady motion, satisfy dV;/dt<<&,<<1, simultaneoudly, if the axial
variation of the diameter near the bottom of the penetrated hole satisfied ori/dz<< << 1,
alsoisinaccord with the characteristic of quasi-steady penetration, then, the results of nu-
merical solution of 2-D non-steady can be transformed equiva ently into theinitiation and
boundary condition of two-direction 1-D non-steady analytical solution. Meantime, the
transition from numerical solution to analytical solution can be performed timely.

When the speed of jet element isequal to or lessthan the critical penetration speed, or
the whole jet mass has already depleted, then, the stagnation of penetration can be deter-
mined.

4 EXAMPLES

Example B1 computes the process made by the short standoff, in which the collapse
of the liner of shaped charge and the penetration of jet to multi-layer composite target
composed of steel, water and concrete are concurrent (table 1). Example B2 computes the
penetration of broken jet to semi-infinite steel target under the condition of the long
standoff (Table 1). The results of fast computational method (FC) are shown in Figure 1
and Table 2, and are compared with results of M EPH! code and experiment.

Compared with experiment, the errors of the jet head speed, DOPto target and the dia-
meter of hole are al less than 10%. Compared with pure numerical solution of MEPH
code, FC method reduces CPU time by 80% (personal computer).

Table 1: The computational examples

Shaped charge . .
Example Length/mm Calibramm Explosive mass’kg Liner masskg Standoff/mm
B1 52 41 0.0246 0.0413 18
B2 243 150 4.6100 0.7500 710
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Table 2: The comparisons of computational results with results of meph code and experi-

ments.
Jet Penetration Expending CPU time/s
g Quasi-steady stage average hole
Example Head speed/(km/s) Last-layer DOP/mm diameter/mm FC MEPH
FC Exp. FC Exp. FC Exp.
B1 5.22 494 468 9.1 8.6 12182 60965
B2 7.76 7.16 1100 1035 26.8 28.6 48628 374061
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Figure 1: Thefast simulating results of full-physics processfor shaped charge.

5 CONCLUSION

The fast computation method not only can exactly simulate the full-physics process
for various shaped charges (short or long standoff, multi-layer composite or semi-infinite
thick target, homogeneous or non-homogeneous material), but also can solve the contra-
diction between the computational accuracy and CPU speed. Thus, it can be extended and
applied to 2-D engineering optimization designs of various shaped charges accurately and
economically.
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