
XXXX

1501

19th International Symposium of Ballistics, 7–11 May 2001, Interlaken, Switzerland

STUDY OF SPIN-COMPENSATED SHAPED CHARGES

A. Koch1, P. Jaggi2, W. Jaun2 and F. Häller2

1 Defence Procurement Agency, Feuerwerkerstrasse 39, 3602 Thun, Switzerland 
2 Swiss Ammunition Enterprise Corp, Allmendstrasse 74, 3602 Thun, Switzerland

INTRODUCTION

Most of the shaped charge warheads are spinning during their flight to the target. On
the one hand, spinning enhances their aerodynamic stability; on the other one, however,
the rotation disturbs the jetting process of the charge. In the 1950’s, intensive investiga-
tions of the spin disturbances and of ways to minimise them were undertaken. Among the
various methods then devised to compensate spin rates in the range 20–200 r.p.s., an effi-
cient one was found in the form of fluted liners. Eichelberger conducted extensive experi-
mental research with such liners by systematically varying the different design parame-
ters (number of flutes, flute depth, flutes on the inner or outer side of the liner, etc.). The
nomenclature adopted hereafter for liner types and design parameters (Fig. 1) is directly
derived from his fundamental work [1].

The present paper is organised as follows: In the next section we shall compare expe-
rimental data from [1] with numerical simulations for charges equipped with fluted liners
of type III. Having shown the relevance of our simplified numerical model, we shall com-
pute the collapse of type V fluted liners. The last section then presents experimental re-
sults for two different geometries of type V fluted liners.

If a standard shaped charge spins during the collapse of its liner, the jet forma-
tion process is disturbed; as a consequence, its penetration capability decreases.
This loss of performance can be compensated by liner design. We present expe-
rimental and numerical data for a 50 mm / 60° charge with fluted liner: on the
inner cone surface, asymmetric flutes are running from the base to the apex of
the liner.
Experimental results obtained for two liner geometries are shown, e.g., the pe-
netration depth in a steel target as a function of the spin velocity. Two-dimen-
sional numerical simulations of fluted liners are also discussed. They provide a
tool to roughly estimate the optimal charge spin rate and its variation trend
when one or several design parameters of the charge are changed.
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Figure 1: Design parameters for fluted cones and liner types. (a) T is the wall thickness
before fluting, a the flute depth, δ the index angle and ψ the angle between step offset and
radius. (b) and (c) show the profiles of type III and type V fluted liners respectively.

Throughout the paper, positive spin rates correspond to counterclockwise rotation ve-
locities when looked at from the rear end of the charge.

NUMERICAL SIMULATIONS OF FLUTED LINERS

Due to the enormous amount of calculations and of memory required by three-dimen-
sional simulations, we only computed the collapse of two-dimensional systems which are
thought to correspond to cross-sections through a charge with fluted liner. Such an ap-
proach was already used by other authors to investigate the behaviour of spinning charges
[2,3]. The 20% of the inner mass of the liner are supposed to form the shaped charge jet,
while the remaining 80% outer mass produce the slug. In view of these crude approxima-
tions we only expect to get some qualitative insight in the phenomenon of spin compensa-
tion. The calculations have been done with the HULL program of Orlando Technology [4]
in a square Eulerian grid with mesh size 0.1 mm x 0.1 mm. For all materials, strength was
neglected. 

To check the effect and validity of the previously mentioned approximations, we tried
to numerically reproduce some of Eichelberger’s experimental observations by comput-
ing the collapse of a two-dimensional cut through a type III copper liner with 16 flutes.
The index angle δ was varied between 0° and 22.5° (=360°/16). Having numerically de-
termined the mean rotation frequency νjet reached by the jet during the collapse of a stat-
ically fired fluted liner, one evaluates the optimal charge spin velocity νo which would
compensate the jet spinning as follows. Let us assimilate the jet to a cylinder with radius
rjet, mass Mjet and spin frequency νjet ; its angular momentum Ljet is given by

Ljet = πMjetνjet rjet2 . (1)
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The jet originates from material which, before collapse, is located on a ring with inter-
nal radius ro and external radius ro + ho (ho << ro). Parameter ho is related to the liner
thickness T by the assumption that the jet is formed by the inner 20% of the cone material:
ho = 0.2 T. The momentum Lo of a ring with mass Mjet rotating at frequency νo is approxi-
mately equal to

Lo = 2 πMjet νo ro ( ro + ho ) . (2)

By applying the conservation of angular momentum, i.e., Lo = Ljet, one evaluates the
initial rotation rate νo which, after collapse, leads to the jet spin velocity νjet:

νo = νjet rjet 2 / [ 2 ro ( ro + ho ) ] . (3)

The radius rjet is related to ro by mass conservation:

rjet2 = ( ro + ho )2 –ro2 ≅ ro ho . (4)

This expression is derived under the assumption that the liner element doesn’t stretch
during the collapse. The spin frequency νo is thus determined by the simple relation

νo = νjet ho / ( ro + ho ) . (5)

The parameters used in our numerical simulation correspond to a cut through Eichel-
berger’s 57 mm charge [1] at a height where ro = 18 mm, ho = 0.2 T and T = 1.539 mm.
With these values (5) becomes

νo ≅ ν jet / 60 (6)

(it should be noted that νjet as well as the proportionality factor depend on the position of
the cut). As a consequence, to compensate the jet rotation νjet induced by the flutes, the
charge should spin in reverse direction with frequency –νjet/60. Figure 2 compares expe-
rimental and numerical data ; the numerical jet spin rate νjet had to be scaled by a factor
–1/90 (instead of –1/60) to agree with Eichelberger’s experimental determination of the  
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Figure 2: Comparison between experimental (°) and numerical (• ) results for the optimal
charge spin velocity νo as function of the index angle δ for a type III liner. The simulated
charge was filled with Comp-B and enclosed in a 1.5 mm thick steel mantle. Observe the
reversal of the spin direction at δ ≅ 12°. As explained in the text, we have calculated the
jet spin frequency νjet and used the scaling νo = –νjet/90 to fit the calculated charge rota-
tion velocity on the experimental data, whereas the crude estimation (5) gives 
νo = –νjet/60.

optimal charge rotation velocity. There is thus a factor of 1.5 between experimental and
numerical results, which is surprisingly good in view of the approximations used to
model the rotating charge. The simulation reproduces the change of spin compensation
direction when the index angle δ increases. However, the two-dimensional calculation
severely underestimates the effect of flutes at index angles close to the boundaries 
δ = 0° and δ = 22.5° of the index periodicity interval.

Having obtained some confidence in this simplified way of simulating a fluted cone,
we modelled a type V liner (Fig. 1). The simulation concerns a fluted copper liner fired
statically ; the spin rate νjet of the jet is again computed by assuming that the 20% of the
inner liner material produces the jet. The optimal charge spin rate νo is then evaluated by
use of relation (5). For the calculation, we used the following values : liner radius at posi-
tion of cut ro = 20 mm, liner thickness T = 2 mm, flute depth a in the interval [ 0.5 mm, 
1.2 mm ]. The charge is enclosed in a 1.5 mm thick aluminum case with external radius
26.5 mm, filled with LX-14.

Figure 3 presents numerical results concerning the charge spin velocity νo as a func-
tion of the flute depth a. Interestingly enough, the optimal compensation rate νo changes
its sign as the flute depth a increases, being positive for a < 1 mm and negative when
a > 1 mm.
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Figure 3: Charge with type V liner. Numeri-
cal results (• ) for the optimal spin velocity νo
as a function of the flute depth a, 15 µs after
initiation of the explosive (t = 15 µs corre-
sponds approximately to the end of the liner
collapse). The reversal of the spin direction
at a≅ 1.0 mm should be noted.

EXPERIMENTAL RESULTS

Based on these simulations we decided to perform experiments with two kinds of type
V copper liners whose characteristics are listed in the following table. In both geometries
the depth of flutes decreases linearly as the steps approach the liner apex.

According to figure 3, charges with a liner having geometry 1 are expected to require
a spin compensation of about 5 to 10 r.p.s., while those with a liner characterized by geo-
metry 2 should need a compensation of –70 r.p.s. As a qualitative measure of spin com-
pensation we used the penetration depth D of the jets in steel targets placed at 1000 mm
stand-off. The spin velocity ν of the charges was varied between –200 and +200 r.p.s.
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Figure 4: Experimental results for the
penetration depth D of the jet produced
by a type V fluted liner (geometry 1, 
a = 0.6 mm) as a function of the charge
spin frequency ν, at 1000 mm stand-off.
The maximum penetration is reached at 
ν = (–30 ± 5) r.p.s.

Geometry 1 Geometry 2
Cone aperture angle α
Number of flutes n
Outer liner radius at base ro [mm]
Liner thickness T [mm]
Flute depth at liner base a  [mm]
Step angle ψ

60.0°
16

25.0
2.0
0.6
1.5°

60.0°
16

25.0
2.0
1.2
1.5°



Experimental results for geometry 1 (0.6 mm flutes)

Figure 4 presents, for geometry 1, the jet penetration D as a function of the charge spin
rate ν. The optimal spin compensation is obtained for ν = νo = ( 30 ± 5 ) r.p.s. The maxi-
mum penetration D = 208 mm corresponds approximately to the one of a smooth equiva-
lent liner fired statically.

While the penetration depth only allows a global statement about the mean spin com-
pensation, comparing X-ray pictures of charges with different rotation rates enables to
draw conclusions about the local jet spinning. It comes out that, at ν = 0, the front part of
the jet (looking like undisturbed) rotates counterclockwise at a high rate (see Fig. 5 and
discussion of geometry 2). The second half of the jet spins much more slowly; this makes
it difficult to determine its sense of rotation. These conclusions agree with the direction of
spin compensation in figure 4.

With the liner of geometry 1, the radial fragmentation of adjacent drops of the jet due
to the centrifugal forces is correlated. The jet seems to break up in two (sometimes three)
strands along its original axis.

Experimental results for geometry 2 (1.2 mm flutes)

Jets produced by liners with geometry 2 are never clean from tip to slug ; at every spin
rate ν some parts are either under- or overcompensated. The maximum penetration D =
195 mm is reached at ν = 0. Despite the lack of spin compensation, the Röntgen pictures
of these jets exhibit several interesting characteristics (Fig. 6). The jet of a statically initia-
ted charge presents two  “bellies ” on its rear part, while the front of the jet remains flaw-
less. If, on the one hand, the charge rotation velocity is increased to –25 or –50 r.p.s., the
radial amplitude of these bellies decreases, the first one vanishing even completely; this
indicates local spin compensation by the fluted liner. On the other hand, if the charge rota-
tes in the opposite direction at rates equal to +25 or +50 r.p.s., the size of the first belly in-
creases notably. This indicates that particles in the rear of the jet have positive (counter-
clockwise) spinning rates.

The front part of the statically fired jet doesn’t present any deformation. However, at
+50 r.p.s., some drops start to show deficiencies. At –50 r.p.s., in the middle of the same
region, a small belly begins to grow. This is a clue that, for a charge fired at 0 r.p.s., the
front of the jet has a small negative spin rate, that is, it rotates in opposite direction to the
rear part.

Comparing geometries 1 and 2, it appears that the whole jet spinning dynamics is sub-
jected to non-linear changes when varying the flute depth. The change of spinning direc-
tion suggested by simulations is observable in the experiments presented here.
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CONCLUSION

For frequencies ranging from –200 to +200 r.p.s., spin compensation of shaped char-
ges can be achieved efficiently by fluted liners. In the present work we have investigated
the possibility of using two-dimensional simulations of fluted liners to get an insight in
the mechanisms of spin compensation. We have shown that this simplified approach can
be used consistently to get the jet spin rate variation trends when one or several parame-
ters are changed. The optimal charge spin frequency νo can be roughly inferred from
numerical calculations.

Our experimental results point out that the design with a flute depth linearly decrea-
sing from base to apex of the liner doesn’t provide a uniform compensation of the spin
over the full length of the jet. The analysis of X-ray pictures of jets produced by charges
spinning at various rates led us to the conclusion that, with the designs used here, the front
and rear parts of a single jet can rotate in opposite directions, even for statically fired char-
ges. This is in agreement with the numerical results of Kipp et al. [5] showing that the an-
gular velocity can reverse its sign along a jet.

Eichelberger explains spin compensation by two (usually) antagonistic physical cau-
ses [1]: the “thick-thin” and the “transport” phenomena. The thick-thin effect is linked to
the differential impulse received by the liner as a function of its local thickness when
accelerated by the detonation products (Gurney); the transport effect is related to the im-
pact angle of the detonation front on the liner. In type V liners, the transport effect should
not contribute to the tangential motion of the collapsing cone (axisymmetric impact of the
detonation front on the liner). However, our results with type V liners seem to indicate
that this explanation is not complete, since even in the absence of the transport effect, the
spin direction can be reversed just by variation of the flute depth. A consistent theoretical
model for spinning charges is still lacking.
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