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INTRODUCTION

The study of plastic deformation using the impact of cylindrical rods on rigid anvils
was pioneered by Taylor [1]. Taylor developed a simple model to relate the resulting rod
profile after the experiment to the dynamic yield stress in the material.

Subsequent investigators [2–7] have improved upon Taylor’s work with more accu-
rate models of the plastic deformation. Current state of the art techniques use sophistica-
ted numerical simulations to analyze the dynamic deformation in addition to the final cy-
linder profile.

In development of an Electro-Magnetic (EM) Armor system for combat vehi-
cles, there is a lack of information on the dynamic EM-Mechanical effects on
materials to support modeling and simulation efforts. In an effort to understand
the coupled EM-Mechanical effects, a series of modified Taylor Impact experi-
ments were designed to measure the dynamic response of OFHC Copper and
6061-T6 Aluminum cylinders subjected to simultaneous mechanical and elec-
trical loads. The cylinders were fired up to 300 m/s from a high-pressure gas
gun through a negatively charged electrode collar, striking a positively charged
anvil; creating an electrical discharge through the cylinder as plastic deforma-
tion occurred. The levels of electrical energy delivered to the test cylinders
were varied for a given range of impact velocities so as to characterize the pla-
stic deformation of each cylinder material as a function of electrical energy de-
livered. The experimental results are to be analyzed by hand-shaking a well
established ohmic heating model with a conventional Taylor Impact analytical
model. The ohmic heating model is two-dimensional and treats current conduc-
tion and heat transport through a moving, axi-symmetric conductor. Solutions
are obtained to the coupled, nonlinear Maxwell and energy transport equations.
The experimental baseline results are presented.
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Experiments have also been conducted at elevated temperatures to determine the
change in dynamic yield strength with temperature.

This work takes that effort one step further by determining the dynamic material pro-
perties due to Electro-magnetic (EM) effects. Large current discharges are used to rapidly
heat the rod and generate EM fields as deformation is occurring. State of the art X-ray ra-
diography and high speed framing cameras are employed to probe the stages of material
deformation while electrical energy is measured during the discharge.

PREVIOUS WORK

W. H. Gust performed reverse Taylor experiments on a variety of materials at elevated
temperatures [8]. The tests Gust performed consisted of using a gas gun to fire a target at a
stationary rod that was heated to an elevated temperature (Fig. 1). The stationary rods
were 6 mm diameter and 30 mm long. The flying target consisted of two layers. The first
being a 12 mm thick Alumina disc 25 mm in diameter backed by a similar diameter, 15
mm thick aluminum disc.

The rods were heated slowly to temperatures of 730° K and 1235° K, using infrared
radiation prior to the launch of the target discs. A soft recovery technique was employed
to recover the rods without further deformation.

A series of baseline tests were conducted by Gust at room temperature to compare the
reverse impact tests to the traditional rod launched results. These tests yielded the same
experimental results, validating the reverse impact technique. These tests are used to vali-
date our experimental technique as well.

Figure 1. Gust’s experimental Figure 2. Current exp. configuration.
configuration.

EXPERIMENTAL CONFIGURATION

Our experimental configuration consists of the more traditional technique of laun-
ching rods with velocities between 50 – 300 m/s at a stationary target. Velocity is varied
by changing the charge pressure in the air gun’s reservoir. The baseline (unelectrified)
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tests conducted used OFHC Copper and 6061 Aluminum rods impacting a two layer tar-
get consisting of 12 mm thick Alumina backed by 12 mm thick aluminum. The target tiles
were nominally 100 mm square.

The electrified tests will be similar but use either hardened steel or TiB2 ceramic in-
stead of Alumina to provide an electrically conductive “hot” target. A brass collar insula-
ted from the end of the gun barrel will provide a ground path for the electricity. The rod
will fire through the ground sleeve and impact the ihhotlh target, completing the electrical
circuit, creating an electrical discharge through the rod as impact and subsequent rod de-
formation is occurring.

Electrical energy will be delivered from a capacitor bank consisting of up to 10, 200 uf
capacitors rated at 22 KV maximum voltage. Current feed to the rod is symmetrical via
“stop sign” electrode plates to eliminate any net force vector acting on the rod due to the
created magnetic field.

DIAGNOSTICS

A suite of diagnostics will be employed to determine the effects of the EM discharge
on the rod during and after the experiment. Rod velocity is determined by a recording the
time interval between a set of pre-measured laser breaks at the end of the gun barrel.

A Rogowski coil connected to a 2 GSa/s digital oscilloscope measures the electrical
discharge by recording the charge vs. time. Numerically integrating this signal yields the
current vs. time the rod is subjected to during the experiment.

Flash X-ray radiography and high speed digital framing is used to observe the change
in rod profile as deformation occurs. The flash X-rays consist of 3 overhead and one or-
thogonal pulser. This allows for 4 images to be recorded as deformation occurs. Similarly,
a high speed digital framing camera is also employed to record “snap shots” during the
deformation process.

The final rod length and axial profile is determined after recovery from the experi-
ment. Final rod length is measured to ± 0.025 mm. An image analysis software package is
used to measure an axial profile of the rods from the images acquired during deformation
as well as after recovery for comparison with numerical simulations.

MATERIALS

The materials of interest for these experiments are: OFHC Copper, 6061 Aluminum,
Tantalum, Molybdenum, and 316 Stainless Steel. Baseline tests were conducted on the
Copper and Aluminum to validate the experimental setup and operation.

1579

Taylor Impact Experiments of Electrified Copper and Aluminium Cylinders



BASELINE (UN-ELECTRIFIED) TESTS

Experimental Results

A series of baseline tests were conducted on OFHC Copper and 6061 Aluminum to
verify our experimental technique. The first tests conducted, used 6 mm diameter x 75
mm long rods. Figures 3 & 4 show the results from the experiments on the copper and alu-
minum respectively. These tests were conducted at impact velocities nominally 155 m/s
and 300 m/s. It is apparent from the images, that buckling occurred during deformation
process.

The next sequence of tests used 6 mm diameter x 50 mm long rods. These tests yiel-
ded virtually no buckling in either the copper or the aluminum (Fig. 5 & 6). It is important
to keep these rods as long as possible for the electrified tests. This allows longer standoff
between electrode plates to help prevent accidental discharge. A length of 50 mm provi-
des a good compromise between buckling and standoff and will be used for the future
tests. A summary of the baseline tests conducted on OFHC copper and 6061 aluminum is
given in Table 1.

Figure 3. 75 mm OFHC Cu Rods. Figure 4. 75 mm 6061 Al Rods.

One traditional method of comparing Taylor experiments is the ratio of final rod
length to original length. In addition to the rod length, we have measured the rod tip dia-
meter to compare the final to initial tip diameter ratio. Deformation of the tip however is
not perfectly symetrical radially. The tip diameter is reported as a range between the mini-
mum and maximum diameter measured. A few of the experiments resulted in mushroo-
ming of the rod tip where diameter can not be adequately quantified, these are noted in
Table 1.
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Figure 5. 50 mm OFHC Cu rods. Figure 6. 50 mm 6061 
Aluminum rods.

For comparison, the length ratio data in Table 1 is plotted along with Gust’s ambient
temperature data in Fig. 7. Our baseline tests on 6061 Aluminum show excellent agree-
ment with Gust’s tests at room temperature. One thing to note is that our OFHC copper re-
sults do not match the annealed copper results published by Gust. They do however,
match the initial un-annealed copper validation tests performed by Gust (used in Fig. 7).
These test results validate our experimental setup and operation.

The measured maximum and minimum final rod tip diameter ratios are plotted in Fig.
8 are clearly more variable than the measured residual lengths.

Yield Stress Calculation

Taylor’s analysis [1] of the plastic deformation of a rod impacting a rigid anvil used
the following formulation which makes several assumptions. First, the rate of decrease in
rod length is proportional to impact velocity. Second, the material flows perfectly plasti-
cally and that the rod decelerates as a rigid body:
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(1)

Where: Lf = final length
L0 = initial length
ρ0 = density
U = impact velocity
σyd = yield stress

As noted by Wilkins & Guinan, the ab-
ove analysis assumes the plastic wave
front remains at the rigid boundary while
infact, it travels down the rod. While the
above ibscaling lawla is valid, a correction
can be made to account for the movement
of the plastic wave front from the rigid
boundary.
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Wilkins & Guinan noticed that in their simulations, the plastic wave front appeared to
move to an approximately fixed position (h) away from the rigid boundary that was pro-
portional to original rod length (L0). Using this observation they derived the following re-
lationship between the residual length of the rod and the yield stress:

(2)

Where: Lf = final length
L0 = initial length
h = plastic def. length
ρ0 = density
U = impact velocity
σyd = yield stress

Rearranging the above equation and
solving for the dynamic yield stress yields:

(3)

It was also noted that the ratio of final plastic wave position to original rod length was
approximately constant at h/Lo ≅ 0.12 for many materials. Using Eq. 3 and the above as-
sumption on the value of h, the yield stress is calculated for each experiment. The results
of the yield stress calculations on the 6061 Aluminum and OFHC Copper are given in Ta-
ble 2 and can be seen in Fig. 9 below.

Aluminum shows a slight increase of yield stress with impact velocity (strain rate) and
compares very well with the value of 420 MPa determined by Wilkins & Guinan (2). As
can be seen, the yield stress data for the OFHC Copper is quite scattered and is higher
than the 300–390 MPa (89–210 m/s impact velocity) range measured by Wilkins & Gui-
nan (2). This is due to the fact that copper exhibits significant work hardening, creating
widely varying yield stresses resulting from variations in manufacturing.

FUTURE WORK

The next step in this project is to identify the pulse characteristics of the capacitor
bank and match the rise time of the pulse to the deformation in the rod. We are interested
in rise times faster than the deformation process to study the coupling between the EM
discharge and mechanical response.
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The bulk of the project then consists of conducting the baseline un-electrified and
electrified tests on each material. Due to the 3 independent test parameters (material, elec-
trical energy, velocity) the test matrix quickly becomes quite large (5 mat’s x 4 Energies x
5 velocities = 100 tests).

The axial profiles measured during and after the tests will then be compared to the nu-
merical simulations in an effort to understand the coupling between the EM discharge and
the material response.
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