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INTRODUCTION

With the emergence of active defense for protecting tanks, the idea of firing a frag-
mentation warhead against an incoming antitank rocket or missile was one of the first
concepts to be considered. The Russian system ARENA was developed using this con-
cept, with launching defensive fragmentation warheads at incoming rockets and missiles
[1]. It is usually admitted that the approaching weapon is defeated once fragments hit the
shaped charge. However, it is of importance both for designing such counter warheads
and also for performing system analysis, to have a more exact knowledge of the quantita-
tive effects of fragment impact on a shaped charge. Such information about the potential
of a damaged shaped charge is particularly required for being able to perform simulations
using system analysis software [2,3].

In the following, this problem is experimentally investigated using radiographic ob-
servation of jet formation and penetration measurements, with both artificially damaged
or fragment impacted shaped charges.

ARTIFICIALLY DAMAGED CHARGES

The problem that is to be studied is that of the effect of a fragment impact on a shaped
charge in terms of jet residual performance. One has to take into account the fact that

The effect of a fragment impact on the functioning of a shaped charge is inves-
tigated. First, experiments are presented with firing shaped charges that were
artificially damaged in order to try to mimic some of the effects occurring in the
charge after a fragment impact. Then experiments are described where a pow-
der gun is used for shooting steel spheres at shaped charges. Radiographic ob-
servations are presented of the jet formation after some time delay between
fragment impact and charge initiation. Typical 3D simulations of shaped charge
functioning after fragment impact are presented, which illustrate the perturba-
tions in jet formation. Some results of the influence of fragment impact location
on shaped charge residual performance are given.
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there may exist both the situation where fragments
impact the outer part of the charge but also the case
where a fragment impacts on the inside of the liner.
In the ARENA system, the fragments trajectories
intersect the shaped charge trajectory at a large angle
and therefore impact almost only on the outer of the
charge. But there also exist defense systems in which
the splinters are fired in front of the incoming
charge, impacting in the shaped charge cavity at an-
gles that could be lower than 20°.

In a first step of the study, sha-
ped charges where fabricated with
including artificial modifications
intended to mimic – into some ex-
tent, a shaped charge that would
have been impacted by a fragment.
Several such experiments have
been performed using 45° conical
charges and two examples are
presented here which correspond
to two very different situations.

Fig. 1 depicts a 45 mm conical
shaped charge with a cylindrical
hole drilled in the rear region of the
explosive, and located in the

charge plane of symmetry. The hole diameter is equal to 7 mm and its axis makes a 30°
angle with the charge axis. A steel sphere is placed in the bottom of the hole with its center
being at 10 mm from the charge axis.

Fig. 2 presents three X-ray pictures of the charge at rest and at 32 and 45 µs after initia-
tion. This figure shows that a coherent jet is formed, which is only affected by a transverse
velocity. It is not surprising to note that such a jet is very similar to what can be observed
when a shaped charge is fired with an off-axis initiation [4].

The jet penetration was recorded at a 6 caliber standoff and was estimated to be 30%
of that of the undamaged charge. But the charge performance would have probably been
higher at lower standoff. From the measurement of lateral jet velocities together with
using an analytical shaped charge code, it can be estimated that at 2 calibers standoff,
such a jet would have reached 60% of the perform-
ance of the undamaged charge.

In the second experiment where the charge de-
picted on Fig. 3 was fired, it was intended to mimic a
much more damaging impact in a charge region clo-
ser to the liner. As shown on the picture, the cylindri-
cal hole was drilled in the explosive and through the
liner. As in the previous experiment, the hole has a 
7 mm diameter and its axis makes a 30° angle with
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Figure 1: 45° conical charge with
a cylindrical hole and a steel
sphere in its rear part.

Figure 2: X-ray pictures of the 45 mm conical
charge depicted on Fig 1, with a cylindrical hole
and a steel sphere in its rear part at 32 µs and 45 µs.

Figure 3: 45° conical charge with
a cylindrical hole through explo-
sive and liner.



the charge axis. The cylindrical
hole is exiting inside the cone at
half the height of the liner.

The radiographic observation
of the jet formation obtained with
this charge is presented on Fig. 4.
One can see that the whole jet is
severely disturbed, with transverse
jet velocities as high as 1000 m/s.

Looking at these radiographs, it
is not surprising that the penetra-
tion depth measured in a mild steel
target placed at 6 calibers was
found to be lower than 10% of the
nominal value. Unlike the previous

case, decreasing the standoff would probably not increase notably the performance of
such a jet.

In the two typical experiments presented here, the effect of a fragment impact was mi-
micked by drilling a hole in the charge. In real life, a fragment impacting on the explosive
at high velocity would create much more damage into the explosive loading than a cylin-
drical hole, and this is the reason why the experimental program was continued with real
firings of fragments at shaped charges.

FIRING FRAGMENTS AT SHAPED CHARGES

In order to get more accurate information about the functioning of impacted charges,
the experimental program was then carried on with the idea of performing more realistic
experiments. A 15 mm powder gun was used for firing 5 mm diameter steel spheres at ve-
locities ranging from 1100 to 1500 m/s. The gun muzzle was placed at about 3 meters
from the shaped charge with a steel sabot catcher plate stopping the plastic sabot. A con-
tact foil was placed on the charge for recording the instant of impact of the sphere on the
charge, and the charge was initiated some delay ∆t after impact. First some typical radio-
graphic observations of charge functioning will be presented and then penetration depth
measurements will be given.

Radiographic observations 

The first experiment described was performed with a 45 mm, 60° conical shaped
charge, which was impacted inside the liner by a steel sphere traveling at 1200 m/s. The
sphere trajectory was included in the charge plane of symmetry, aiming at half the height
of the liner and making a 20° angle with the charge axis. The charge was initiated 105 µs
after the impact of the sphere.
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Figure 4: X-ray pictures of the 45 mm conical
charge depicted on Fig. 3, with a cylindrical hole in
the liner region at 32 µs and 45 µs.



Fig 5 presents three X-ray pic-
tures with the first picture taken 40
µs after impact and 65 µs before
the charge initiation; the two last
pictures been taken respectively
11 and 30 µs after the initiation.
On the two first pictures, one can
see that the liner has been perfora-
ted by the sphere and in spite of an
apparently limited damage, the
third X-ray shows a drastically di-
sturbed jet formation. The jet co-
herency is poor and one can see al-
most no jet element on the charge
axis.

The second experiment pre-
sented was performed using the
same impact conditions on a
somewhat larger charge. The same
5 mm in diameter steel sphere (0.5
grams) was fired at 1200 m/s, at 20° with the charge axis, and aiming at the liner half
height of a 65 mm shaped charge.

As shown on Fig. 6, the charge has a trumpet liner and a light aluminum body on
which is placed a contact foil. The steel sphere can easily be seen on the first two radio-
graphs taken before and after impacting on the liner. The charge was initiated 255 µs after

the impact on the casing, which
corresponds to about 140 µs after
the impact on the liner. The third
picture shows the jet 51 µs after
the charge initiation.

Comparing the jet with the pre-
vious experiment depicted on Fig.
5, one can see that the jet is devia-
ted in the same direction, i.e. in the
half-plane containing the impacted
part of liner. The amount of jet de-
viation is smaller than in the pre-
vious experiment mainly because
of the fact that the fragment mass
was unchanged for a larger charge.
Comparing the two experiments is
– to some extent, equivalent to
looking at the effects of dividing
the fragment mass (or energy) by a
factor of three.

602

Warhead Mechanics

st Ø 5 mm
1200 m/s

FIGURE 5: 60° conical charge, 45 mm CD impac-
ted by a 5 mm steel sphere at 1200 m/s. Charge in-
itiation at 105 µs after impact. X-Rays at –65µs,
+11 µs and +30 µs from initiation.

FIGURE 6: 65 mm shaped charge impacted by a
5mm steel sphere at 1200 m/s. Charge initiation
at ~140 µs after impact on the liner. X-Rays at
–150 µs, +15 µs and +51 µs from initiation. 

st Ø 5 mm
1200 m/s



Numerical simulations

Some numerical simulations have been perfor-
med using the Eulerian processor of the OTI*HULL
code, in order to see if it would have been possible to
reduce the number of experiments. Fig. 7 presents
the result of a numerical simulation of the experi-
ment previously described and depicted on Fig. 5. In
the calculation, the explosive is initiated on the axis
at 15 µs after impact. One can see a qualitative agree-
ment in the overall jet deviation, but details in the jet
incoherency could not be reproduced although 2 mil-
lions cells have been used.

Fig. 8 presents an other example of numerical si-
mulation, in which a 70 mm shaped charge is impac-
ted by a 2 grams steel fragment at 2000 m/s and un-
der 45° incidence. The high explosive was initiated
30 µs after fragment impact.

There exist some rather specific difficulties
related with the numerical simulation of the
detonation of a shaped charge impacted by a
fragment. Besides the fact that such 3D simu-
lations require large computing capabilities,
one must be able to correctly describe the frag-
ment penetration into the undetonated explo-
sive, and this aspect is difficult to handle as the
explosive may be somewhat reacting even if
not detonating. The same kind of difficulty
concerns the detonation front propagation in
the damaged region of the explosive. All these
reasons lead to the idea that numerical simula-
tions are of qualitative interest for understand-
ing what happens when no observation are
available, but real firings at charges are still re-
quired for an estimation of the performance of
impacted charges.

Penetration capability of impacted charges

The shaped charge shown on Fig. 6 was used for a quantitative study of the residual
performance of impacted charges. The charge caliber CD is equal to 65 mm; the charge
has a trumpet shaped liner and a thin aluminum casing. All the shots were performed
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Figure 7: numerical simulation
of the experiment on Fig. 5. 

Figure 8: Ø 70 mm conical shaped
charge impacted by a 2 grams steel frag-
ment at 2 km/s and 45° incidence .



using the 15 mm powder gun for fir-
ing 5 mm steel spheres (0.5 grams)
at 1400 m/s. The impact point on
the charge and the angle of impact
were varied and the residual pene-
tration depth was measured. The
angle of impact α is defined on Fig.
9, where α = 0° corresponds to a
fragment trajectory perpendicular
to charge axis and where positive α
values correspond to frontal attack.

Fig. 9 also defines the impact location on the charge casing by its axial distance x to
the liner apex. In the following, the experimental results will be presented as a function of
the hit location x scaled by the liner axial length L. Therefore negative x/L values would
correspond to fragment impacts located between charge initiation and liner apex, and x/L
values larger than 1 (with α negative) would correspond to impacts located in the charge
nose – therefore impacting inside the cone.

The fragment trajectory was included in the axial plane of symmetry of the charge
with the exception of two shots for which the trajectory plane was .25CD off the charge
axis.

For all experiments, the
fragment impact time was re-
corded using a contact foil
placed at the aimed point on
the outer surface of the
charge. The charge was then
initiated after a 2000 µs delay
time after the impact. The pe-
netration depth was measured
into a mild steel plates stack
placed at a 1.5CD standoff
distance (charge built-in
standoff).

The obtained results are
presented on the diagram on
Fig. 10 as measured penetra-
tion depths P scaled by the no-
minal charge performance P0, as a function of the scaled impact location x/L. The diffe-
rent marks on the diagram correspond to the different values for the angle of impact.

It appears that for the impacts that are located close to the liner region, the impacted
charges have lost more than 70% of their penetration power as compared to the undam-
aged charge performance. For the firings where penetration depth was found to be larger
than 40% of the nominal performance, it can be seen that they correspond to fragment tra-
jectories which either do not cross the liner (negative or low x/L values) or which just
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Figure 9: definition of impact conditions.
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Figure 10: penetration depth of impacted charges as a
function of impact location. Charge 65 mm, fragments
0.5 grams, 1400 m/s. 



touch the basis of the liner (large x/L). It must be known that the two shots with a frag-
ment trajectory plane offset from the charge plane of symmetry gave lower penetration
depth that for the same x/L and α in the plane of symmetry shots: this result could be ex-
plained by a higher level of asymmetry in the impacted charge.

The last remark concerning the charge plane of symmetry, together with the fact that
measurements were performed into mild steel and with the fact that real ot values would
be larger than 2 ms, lead to the deduction that the results presented on Fig. 10 represent an
upper limit of the reality. In real situations jets asymmetries could be higher than in our
experiments and the decrease in penetration would be larger in armor steel as it is known
that the consequences of jet asymmetries increase as target strength increases.

CONCLUSION

The effects of fragment impact on the functioning of shaped charges have been stu-
died. Radiographic observations and numerical simulations have qualitatively shown
how the jet formation can be disturbed by the charge asymmetries produced by the impact
of a fragment. Experimental measurements of the residual penetration capability of im-
pacted charges have been collected and these data are available for vulnerability codes
and active defense simulations.
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