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INTRODUCTION

Shaped charge has long been known for achieving the extremely high velocity jets and
bringing out the strong penetration effects against various targets. The development of
shaped charge technique is well documented in detail by Walters [1]. A simple shaped
charge can be readily fabricated. Any hollow metal cone or notch-shaped metal plate
wrapped by an explosive becomes a shaped charge. However, this simple configuration
of the shaped charge contains the complicated interplay of many complex phenomena in-
cluding explosive detonation, shock loading on the liner, high strain, high strain rate, mel-
ting as well as the phase changes of the liner material. Generally, the jets formed in the
shaped charges can reach the velocity ranging from 6 to 10 km/s. Since such high velocity
can be achieved by shaped charge, there is no other way to compete with shaped charge at
present so efficiently on the acquirement of high velocity object.  

Recently, with the advancement of the space exploration activity, it becomes more and
more important for the protection of the spacecraft from impact of various meteoroids or
space debris. Several investigators [2,3] employed the jets from shaped charge to simulate
the orbital space debris for the study of whipple bumper design. However, the current
shaped charges, in most cases, are initiated by the way from which the detonation of ex-
plosives is fulfilled in the common Chapman-Jouguet (C-J) detonation form. As a conse-

So far at the present, most shaped charges are initiated by the way from which
the detonation of explosives is fulfilled in a usual Chapman-Jouguet (C-J) deto-
nation form. This paper presents the new designs of shaped charges that utilize
the overdriven detonation of high explosive for the purpose of achieving the
higher jet velocity. The initial experimental tests have been performed in an at-
tempt to exploring the features of these shaped charges. The jet velocities are
measured and the penetration effects are tested by the steel blocks. A compari-
son of the results is made between the shaped charge in usual form and the ones
demonstrated in this study.
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quence, the detonation products begin to expand from the C-J state to collapse the liner,
forming the jets. Overdriven detonation [4,5], however, is a detonation process that can
cause higher or much higher pressure in the products than does the C-J detonation of ex-
plosives. Taking use of the concept of overdriven detonation in shaped charges, the jet ve-
locity may be expected to be improved because the liner is pushed by the overdriven deto-
nation products. In order to reach a velocity as high as possible in a shaped charge, we try
to design the shaped charges that use the overdriven detonation in the explosives for re-
placement of the conventional detonation way in shaped charges having ever been used.

EXPERIMENTAL PROCEDURES

Design of shaped charges

Figure 1 shows three types of configurations of shaped charges used in the experi-
ments corresponding to the situations of normal and overdriven detonations. All forms of
shaped charges shown here are of conical geometry. Figure 1(a) is the regular type of
shape charge employed by many practitioners who involved with the researches of shaped 

(a) RC                                          (b) ORC                                                       (c) OCC

Figure 1: Several types of shaped charges used in this study. (1-Explosive lens, 2-Explo-
sive, 3-Flyer plate, 4-Explosive in charge, 5-Casing, 6-Liner.
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charges. The other two types, as shown in Figs. 1(b) and 1(c) are the newly designed sha-
ped charge devices attempt to applying the overdriven detonation of high explosive. For
simplicity of later description on these devices, some signification is made here. The re-
gular type shaped charge is signified by ‘RC’, meaning the regular conical shaped charge.
Meanwhile, the other two devices are indicated by ‘ORC’ and ‘OCC’, respectively, for
shaped charges with the right-circular casing and inversely-conical casing. The ‘RC’
charge is directly initiated by a plane-wave generator, while, the ‘ORC’ and ‘OCC’
charges are initiated by a flyer plate accelerated by an additional explosive cylinder. The
flyer is expected to cause the overdriven detonation in the explosive contained in charges.
The detailed characterization on those three types of shaped charges is expressed in Table
1. The conditions for the acceleration of flyer plate used in’ ORC’ and ‘OCC’ types of
shaped charge are presented in Table 2. Further, Table 3 illustrates the Chapman-Jouguet
detonation properties of the explosive used in all shaped charges.

Table 1: The conditions related to liners, casings and exploisves used in three types of
shaped charges

Table 2: Data of flyer acceleration in “ORC” and “OCC” charges
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Charge type Liner Casing Explosive

RC

Shape: hollow cone
Material: copper
Dimensions:
       20 mm outer diameter
       20 mm height
       1 mm thickness

Shape: right circular  hollow
            cylinder
Material: SS 400 steel
Dimensions: 50 mm outer diameter,
                     20 mm inner diameter,
                     30 mm height

PBX  (HMX 78%
 by weight)

ORC

Shape: Hollow cone
Material: copper
Dimensions:
       20 mm outer diameter
       20 mm height
       1 mm thickness

Shape: right circular
            hollow cylinder
Material: SS 400 steel
Dimensions: 50 mm outer diameter,
                     20 mm inner diameter,
                     30 mm height

PBX  (HMX 78%
 by weight)

OCC

Shape: Hollow cone
Material: copper
Dimensions:
20 mm outer diameter
20 mm height
1 mm thickness

Shape: right-circular cylinder  with
            an inverse conical hollow
Material: SS 400 steel
Dimensions: 50 mm outer diameter
             20 mm small inner diameter
             42 mm great inner diameter
             30 mm height

PBX  (HMX 78%
 by weight)

Flyer Explosive Casing

copper : 45 mm diameter
2 mm thickness

PBX  (HMX 78%  by weight)
SS 400 steel,  cylindrical
45 mm outer diameter, 41 mm inner
diameter, 2 mm thickness



Table 3: Chapman-jouguet detonation properties of 78% explosive

Figure 2: Illustration of the structure of pin-probe measurement of jetvelocity. (1,5-OHP
sheet, 2,4-Aluminium foil, 3-Paper, 6-Electrical foot line).

Measurement of jet velocity

The velocities of jets from three types of shaped charges are measured by using the
pin-probes as shown in Fig. 2. The probe is of a sandwich structure, consisting of two
very thin pieces of aluminum foil (2 microns or so) separated by a piece of paper as well
as two plastic sheets (such one in use for over-head projector) protective coverings. The
foot-lines for the circuit start from the two foils, respectively. All the feet are connected
with an oscilloscope for monitoring the signal transmission. When jet impacts on the
probe, the electrical conductivity becomes possible and then the signal is recorded as the
time instance of arrival of the jets at the corresponding position. For two known locations,
the average velocity of jets between them can be determined by dividing their distance
over the time difference of arrivals at them.

Test on jet penetration

The penetration capability of the jets from those shaped charges is tested by a stack of
steel blocks with the dimensions of 70 mm by 70 mm by 25 mm. So, the penetration depth
and the size of the holes can be measured after the recovery from the experiments. Figure
3 exhibits the combined arrangement for the measurement of jet velocity and the penetra-
tion capability simultaneously in one experimental firing. The distance for the initial jet
velocity measurement is parted as 30 mm away. Also the average jet velocity between a
steel block can be estimated based on this arrangement. The right-hand side of Fig. 3
shows the photograph of an experimental assembly before firing.
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Density (g/cm3) Detonation velocity (km/s) Detonation pressure (GPa)

1.584 7.337 20.64
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(a) (b) 
Figure 3: Arrangements for jet velocity measument and penetration test. (a) Schematic Il-
lustration (1. Shaped charge, 2. Pin-probe, 3. Suppot truss, 4. Steel block), (b) Photograph
of experimental assembly before firing.

RESULTS AND DISCUSSION

The experimental results from the conducted experiments are summarized in Table 4.
First, let’s look into the detonation velocities of explosives in the respective charges. The
detonation velocity was measured through the optical fiber method. For ‘RC’ charge, the
measured detonation velocity is 7.692 km/s, deviating from 7.337 km/s of the C-J detona-
tion velocity of the PBX explosive. In the ‘ORC’ charges, the measured velocities have

Table 4: Summary of experimental results
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Jet velocity (km/s)

Between steel block (mm)
Exp.
No.

Charge
types

Detonation
velocity in
charge
(km/s) Initial

0-25 25-50 50-70

Penetration
depth (mm)

Standoff
distance
(mm)

1 RC 7.075 2.643 2.100 86.7

2 ORC 6.610 2.800 2.111 99.1 5

3 OCC 9.375 9.460 3.113 2.945 68.1 5

4 RC 7.692 5.958 2.830 2.104 86.9

5 ORC 6.849 7.059 2.959 2.343 101.0 5

6 ORC 7.203 6.849 3.193 2.242 1.846 107.5 10

7 ORC 8.052 6.749 2.969 2.178 99.5 20

8 OCC 9.927 7.853 2.700 2.366 75.5 20

                                                               

1

2

3

4



a great deviation among each other, averaged value being 7.368 km/s. However, in the
two ‘OCC’ charges, the detonation velocities both are over 9.0 km/s, far greater than the
C-J detonation velocity of the explosive used. The correctness of these values should be
further examined. 

On the jet velocities from these experiments, the initial velocity of jets in ‘RC’ charges
are varied from about 6.0 to 7.0 km/s, while, in ‘ORC’ charges, they are from 6.75 km/s to
7.0 km/s, and in ‘OCC’ charges, the initial velocities of jets is ranging from 7.85 km/s to
9.46 km/s.  Totally speaking, the jet velocity is increased in the ‘ORC’ and ‘OCC’ char-
ges. After the jets penetrated the first steel block, the jet velocity is almost decreased to
half or less value. The later decrease in jet velocity is relatively not so great.

On the depths of the penetrated holes, the deepest is given by one ‘ORC’ charge in
which the jets reached the fifth steel block, making a depth of hole of 107.5 mm. The situ-
ation is also clearly revealed in Fig. 5 by the photographic illustration. The second fol-
lows the ‘RC’ charge that penetrated to about 87.0 mm. The worst is the ‘OCC’ charge,
only 75.5 mm maximum depth being accomplished.  Although the initial jet velocity was
high, the penetration, however, is of so bad effect. Once again, it demonstrates that the jet
have been dispersed or particulated during its flying movement. It is naturally deduced
that due to the jet dispersion or particulation, the overall or effective mass of jets is decre-
ased so that the penetration capability is hence weakened.

Figure 4 shows the photographs of the configuration of the penetrated steel blocks in
No. 4 experiment that used the ‘RC’ shaped charge. Fig. 4(a) gives the appearances of the
top surfaces of the steel blocks that face the jet’s incoming motion and Fig. 4(b) shows the
bottom surfaces of steel blocks. It demonstrates that the fourth block was not penetrated
completely. Similarly, Figs. 5 and 6 present the photographs of the configuration of the
penetrated steel blocks in No. 6 and No. 8 experiments by ‘ORC’ and ‘OCC’ shaped
charges correspondingly. In all experiments, the first block is subject to a big hole at the
top surface, then, from the second block, the sizes of holes greatly decreases and the
blocks are of the slow variation in hole diameter. At the same time, the hole in the first
block exhibits some regularly circular shape on the situations of  ‘RC’ and ‘ORC’ shaped
charges, however, in the ‘OCC’ shaped charges, the holes are relatively shallow and, mo-
reover, the brink of the hole displays an irregular configuration. The occurrence of this
phenomenon, to large extent, is due to jet dispersion at the later phase of motion. 

The sizes of penetrated holes are tabulated in Table 5. The values shown here are aver-
aged by diameters of two perpendicular directions. Since the hole is not regularly circular,
the data are only given by approximation. The hole on the top surface of the first block
falls into 8 to 13 mm range. The average size can be said to approach 10 mm, nearly the
half of the diameters of the liners.  
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Table 5: The sizes of holes in the pentrated steel blocks
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(a) Top faces (b) Bottom faces
Figure 4: Photographs of penetrated steel blocks in No. 4 experiment.

(a) Top faces (b) Bottom faces
Figure 6: Photographs of penetrated steel blocks in No. 8 experiment.

(a) Top faces (b) Bottom faces
Figure 5: Photographs of penetrated steel blocks in No. 6 experiment.

     Sizes of holes in average diameter (mm)

Block 1 Block 2 Block 3 Block 4 Block 5Exp.
No.

Charge
types

T* B T B T B T B T B

1 RC 9.8 4.8 4.8 4.4 4.0 2.9 2.8 2.8

2 ORC 13.4 6.0 5.8 4.8 4.3 4.7 4.0

3 OCC 11.2 6.3 5.4 5.0

4 RC 9.5 4.0 4.0 3.4 3.6 3.0 3.0 1.0

5 ORC 8.2 6.3 5.3 4.5 4.5 4.4 2.5 2.0

6 ORC 10.1 6.4 5.1 4.4 3.5 4.4 4.4 4.8 3.5

7 ORC 10.3 5.6 4.8 4.1 4.0 3.4 3.5

8 OCC 8.1 5.1 5.2 4.3 4.4 3.6

  * T-Top surface, B-Bottom surface



CONCLUSIONS

Novel designs of shaped charges that utilize the overdriven detonation of high explo-
sive were proposed and the experimental tests have been performed in order to make an
understanding toward their characteristics. Although the experimental results demon-
strate some encouraging aspects on these new designs of shaped charges, the thorough in-
vestigation should be carried out in the later work so as to give the convincible verifica-
tion on the superiority of these designs. Furthermore, the numerical analysis toward this
problem is under construction. 
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