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RELATIVE PERFORMANCE OF ANTI-AIR MISSILE
WARHEADS1

Sam Waggener

Naval Surface Warfare Center / Dahlgren Division, 17320 Dahlgren Rd., Dahlgren, VA

WARHEAD TYPES AND THEIR RELATIVE PERFORMANCE

Baseline Warhead

The most common type of anti-air missile warhead is a circular cylinder consisting of
a central explosive core surrounded by a metal fragmenting outer layer. It is initiated on
axis to produce a symmetric fragment pattern about the missile axis, Figure 1(a). Per-
formance can be estimated using the Gurney formula for cylindrical warheads2, 
V = E• (M/C+1/2 )-1/2 where V, E, M, and C are the initial fragment velocity, the explosive
energy, fragment casing mass, and the explosive mass respectively.

1(a). Axially initiated cylinder 1(b). AI cylinder
Figure 1. Axial view radiographs of fragment pattern.

This paper quantifies the relative performance of five types of cylindrical anti-
air missile warheads. The warhead performance is quantified in terms of the
amount of fragment mass that can be projected at the target as a function of in-
itial velocity on a fixed mass (explosive plus fragment case mass) basis. Per-
formance of the directional warheads is discussed in terms of azimulthal Target
Detection Device (TDD) (fuze) requirements.
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Asymmetrically Initiated (AI) Warheads

An AI warhead initiates on a line or lines at the explosive/case interface opposite the
direction of aim. This produces a fragment pattern with a 20 to 30% higher velocity in the
direction of aim compared to the same warhead initiated along the central axis (Figure
1(b)). The aiming of such a warhead can be accomplished by initiation of 1, 2, or 3 lines
of initiators from a warhead containing 4 to 16 equally spaced lines of initiators. An azi-
multhal sensing TDD would be used to signal the choice of initiator line(s) to direct the
enhanced velocity fragments toward the target.

Fragment velocities can again be estimated
from the Gurney formula with an additional
term to take into account the enhanced velocity
in the aim direction, V=A•E• (M/C+1/2)-1/2. A is
a constant that we will assume as equal to 1.25,
thus assuming a 25% velocity enhancement in
the aim direction. The enhanced performance
through asymmetric initiation is measured by
the amount of fragment mass that can be projec-
ted at the target at a desired velocity compared to
our Baseline.* This relationship is shown in Fi-
gure 2. This “Gain” is found by determining the
M/C ratio, which gives the desired fragment ve-
locity for each of the two type warheads. For a
fixed weight system, the fraction of mass that
can be devoted to the case is, M=1/ (C/M+1).
The ratio of the “Ms” is the “Gain”. It can be
seen that the advantage of employing the AI
warhead is when the required fragment velocity is high. This occurs when miss distances
are large, closing velocities are high and/or when the target is short. 

TDD accuracy can be fairly lax for AI warheads. In Figure 1(b), we see that high velo-
city is maintained over a wide beam width, i.e. 60° or so.  If the TDD can sense the rela-
tive target position at intercept to within ± 30° of the true position, near maximum frag-
ment striking velocities will occur.

N-Sided Cylinders

There has been discussion throughout the years on using multisided cylindrical war-
heads with selectable initiation sites to enhance warhead performance. Performance may
be enhanced over that of a circular cylindrical warhead due to the possibility of focusing
the mass of each face (side). This analysis will consider the warhead fixed in the missile
(rotatable warheads are considered latter). The warhead has N number of aim directions
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* Plotting mass as a function of velocity allows comparison for any damage function in the form of M•Vx,
where X is any value.

Figure 2. Performance enhancement
for AI.



equal to the number of sides. Selection of initiation of the explosive is such that the ejec-
tion direction of fragments from a face can be altered so that at least part of the fragment
beam is always directed at the target. This allows beam focusing while maintaining 360°

coverage. The features of this concept are illustrated in Figure 3.
The measure of merit will be the amount of fragment mass that can be projected at the

target at a given velocity compared to that of our Baseline. The analysis approach will be:
(1) determine change in ejection angle possible (beam agility); (2) determine beam spray
requirements for each face so that 360° coverage is obtained; and (3) estimate enhance-
ment possible as a function of number of sides and required TDD accuracy.

Beam Agility
Altering the explosive ignition point can alter the fragment ejection direction. For

example, changing the point of ignition from the center of a cylinder to a side alters the
ejection angle of the fragments as shown experimentally in Figure 4. Maximum alteration
occurs when the detonation wave strikes the fragmenting case at right angles with respect
to the wave direction (bottom side of cylinder in Figure 4). Note the wide beam spray pro-
duced. However, velocities from this side are 25% lower compared to those an axially in-
itiated cylinder. For typical fragment and detonation velocities, angle changes of 7 or 8°
are possible. For this analysis it was assumed that a 5° change could occur without a re-
duction in velocity. This is an optimistic assumption, which probably leads to optimistic
results. It assumes that a 5° change in angle is possible by initiation on a line at the
case/explosive interface 90° from the face being considered (left/right faces of the cylin-
der in Figure 4 (note how the beam is shifted upward).

Beam Spray Requirements to Provide 360° Coverage
The warhead is fixed in the missile so each face of the warhead must be able to cover

at least 360° / N; where N is the number of faces. Since we assume ± 5° beam agility, the
inherent beam spray for each face can be 10° less than 360° / N. When the number of
faces reaches 36, a zero degree wide beam could theoretically produce 360° coverage.
This coverage is possible by providing precise aim control by sequencing two or more
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Figure 4. Axial radiograph showing pat-
tern from a 4-sided asymmetrically initia-
ted cylinder.

Figure 3. Six-sided cylinder with 6–50°
wide beams. Selective initiation used to
provide 360° coverage.



lines of initiation.
Performance Predictions
Since all multi-faced cylinders are nearly

circular in cross section and initiation occurs
approximately a warhead radius away from
the chosen face, they produce fragment velo-
cities approximately equal to that of the Ba-
seline at equal C/M. The performance of
these warheads is shown in Figure 5. Gain is
simply the inverse of the amount of beam
shrinkage, or 1/[1-N/36]. Performance incre-
ases with number of faces reaching an infi-
nite value for a 36 faced cylinder (Figure 5). 

Minimum Beam Spray Requirements
An azimulthal sensing TDD must be used

in conjunction with a multi-faced warhead.
Azimulthal TDDs are not precise. They typi-
cally employ some scheme to interpolate be-
tween two or more sensing beams to define
angular positions. TDDs also estimate dis-
tance to the target. This measurement along
with target/interceptor velocity estimates and
some encounter geometry information is
used to produce a “time delay” which con-
trols when to burst the warhead. This time
delay must also include an estimate of time
of flight of the fragments. The uncertainties
inherent in all these processes require war-
head compensation by producing a wider
fragment beam spray. Reference 3 calculates
the warhead fragment beam spray required to
produce hits on a target as a function of TDD
accuracy. Table 1 shows some of these calcu-
lations. 

Figure 5 plots the probability that the
fragment beam spray will intersect the target
(PH) as a function of fuze accuracy and the
number of sides of the cylinders†. As the fuz-
ing error becomes large, the probability that
the beam strikes the target becomes equal to
that for a non-azimulthal sensing fuze, i.e. 
1-N/36. Figure 6 plots Gain multiplied by PH
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Figure 5. Performance and PH for multi-
sided cylinders.
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Figure 6. Figure of merit for multi-sided
cylinders.



as a function of fuze accuracy. This results in a figure of merit for the combined effect of
fragment focusing and the probability that the focused beam strikes the target. Multi-si-
ded cylinders show significant Gain if very accurate fuzing is available (Figure 6). The
product of PH• Gain is greatest for cylinders with 20 to 30 sides using very accurate fuzes.
It should be stated that even though this figure of merit is always greater than 1, it is a
poor tradeoff to increase fragment density on target for some encounters at the expense of
missing the target entirely in others. This effect becomes exacerbated as the number of si-
des increases. For example when N=36, the calculated Gain approaches infinity but the
PH is near zero unless the fuzing is perfect. Narrow beams produced by the many sided
cylinders are probably impractical for other reasons. Even if the TDD was perfect in pla-
cing this beam on target, a certain minimum area of the target surface must be covered to
assure a hit on a vulnerable component. Due to these considerations, fixed-aim concepts
based on initiation controlled beam agility concept appear to be impractical.

Deformable Warheads

The deformable warhead consists
of an explosively filled fragmenting
cylinder surrounded by a layer of ex-
plosives divided radially and buffered
so that the resulting strips can be initi-
ated independently (Figure 7). In ope-
ration the TDD senses the desired di-
rection of aim, a number of the outer
explosive strips, deforming charges,
are initiated (3 out of 12 shown in Figure 7). Detonation of the strips causes deformation
of the fragmenting case so that at some later time a large portion of the case is flattened at
which time the main charge is initiated by a line initiator on the side opposite case defor-
mation. The flattened portion of the case is projected at the target (typically 30% of the
circumference) at high velocity. As a first order approximation, fragments are ejected in a
direction normal to their outer surface; the fragments originating from the flattened por-
tion of the case can be projected in a tight
beam at the target. The beam tightness can be
controlled and is optimized to the azimulthal
resolution of the TDD.

Figure 8 illustrates the fragment pattern
produced from a deformable warhead. Frag-
ment velocity can be predicted from the Gur-
ney formula using a value of 1.15 for A,
assuming asymmetrical initiation. The value
for the explosive energy, E, however, must be
reduced by approximately 15% to take into
account the requirement to use the shock in-
sensitive explosive, Navy designated PBXN-
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Figure 7. Sequential operations of a deformable
warhead.

Figure 8. Axial view radiograph of a per-
formance warhead fragmentation pattern.



128. This explosive contains more inert binder than is normally used for air target appli-
cation accounting for the decrease in energy. For comparison purposes, the Deformable
warhead incurs a 25% weight penalty due to the additional weight of the deforming char-
ges. Because of the offsetting nature of asymmetric initiation and lower energy explosive,
the relationship of velocity with M/C is the same as that of the Baseline. Therefore Gain is
calculated as 108˚ (the sector of the Baseline which contains 30% of the case mass) di-
vided by the desired azimulthal beam spray multiplied by 0.75 to account for parasitic
weight. Representative Gains are 8.1, 4.05, 2.7, 1.8, and 1.35 for beam widths of 10, 20,
30, 45, and 60˚ respectively. Table 1 can be consulted to determine fuze accuracy’s com-
patible with these beam widths.

Fixed-Aim Warheads

Studies were conducted to show the per-
formance potential of Fixed-aim warheads
that require missile roll or some internal me-
chanism to aim the warhead.4 One example
is the square cylindrical warhead shown in
Figure 4. Some mechanism is required to roll
the warhead up to 45°. Test results indicate
that maximum velocity in the aim direction
can be predicted using the same equation for
velocity used for AI warheads. As shown in
Figure 4, fragment velocity decreases appro-
ximately 25% towards the edges of each face
of the cylinder. For comparison purposes it
was assumed that the sides of the cylinder
could be tapered uniformly to the center of
each side so a uniform velocity could be ob-
tained. The required taper results in the edge
being 33% the thickness of the center and re-
sults in a fragment with 67% of the original mass. The equation for velocity becomes:
V=1.25•E•[(1/0.67)•M/C+1/2]-1/2. The relative performance of the square warhead is
shown by the solid curves in Figure 9. It was assumed that the sides of cylinder could
have a curvature to provide the beam spray desired. The gain in performance with the nar-
rower beam sprays is probably not practical because of precise aiming and fuzing require-
ments, the 2 to 3+ gains at 30 and 45° are probably useable. At a 90° beam spray the per-
formance enhancement is minimal and an AI warhead would be a better choice. 

Performance of single sided warheads has also been analyzed.5,6 The warhead was to
fit a circular cylindrical contour of a missile body. Parameters varied were fragment layer
thickness, w, confinement thickness, t, and height of the free volume, h, illustrated in Fi-
gure 10. The Hydrocode CTH was used to evaluate the velocity of the fragment layer.
This layer was modeled as steel with a very high strength value to keep it intact so that a
single average velocity could be obtained. The results indicate that on a constant mass ba-
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sis, a zero confinement thickness maximizes the amount of fragment mass that can be
projected at any required velocity. The amount of fragment mass is fairly insensitive to
this parameter up to values of 0.03. Fractional fragment mass at a given velocity increases
with h (large h values are unrealistic because of their poor volume efficiency). Figure 11
plots the fractional fragment mass at a t value of 0.01 for different values of h. For this
analysis a volume efficient h value of 0.25 was used along with a nominal confinement
value t of 0.01, which functions as the explosive container. It is assumed that the plate can
be contoured to project the fragments into the width azimulthal zone desired. The gain in
projected mass compared to our Baseline is shown in Figure 10 as the dashed curves. The
Gain is plotted as a function of beam angle and the same comments apply as to their prac-
ticality as in the case of the four-sided device. The potential gains for the single-sided
warhead are large. The Gains are three times that of the four-sided cylinder. The technical
problem is developing a method of aiming such a warhead. 

Figure 10. Single-sided fixed aim parameters. Figure 11. Fractional fragment
mass for single-sided fixed-aim.

SUMMARY

This paper examines the relative performance of several different anti-air warheads.
Performance is defined as the amount of fragment mass that can be projected at a target
compared to an axially initiated circular cylindrical warhead of equal mass. Modest gains
in performance are possible for warheads for which aiming is accomplished by control of
the position of explosive initiation. Large gains in performance are possible for warheads
with a single-side or four-sides if there is some means of aiming the/a side at the target.
The method of this aiming is not addressed in this paper. For all warheads and especially
those with selectable beam sprays, the beam width must be compatible with fuzing accu-
racy.
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