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INTRODUCTION

Because of the wide use of steel alloys in fragmenting munitions, their fragmentation
properties are generally well characterized. We have recently investigated the perform-
ance of a relatively new high strength alloy, AerMet® 100. AerMet® 100 is produced by
Carpenter Technology Corporation and has been used extensively in the aerospace in-
dustry. Its high strength and ductility make it attractive for use in ordnance applications. 

In order to determine the fragmentation properties of AerMet® 100, a series of experi-
ments was performed that compared the dynamic properties of the material as a function
of its heat treatment. These experiments were conducted using test items of three different
cylinder geometries. In each test case, hardware was fabricated using as-received and
heat-treated material. The experiments were designed to quantify the performance of the
material in terms of case expansion, fragment velocity, and fragment mass distribution. 

This paper summarizes the results of these tests, and compares the fragmentation
characteristics of AerMet® 100 in its heat-treated and as-received condition.

DESCRIPTION OF EXPERIMENTS

The basic experimental set-up used is illustrated in Figure 1. A detailed description of
the test is given in reference 1. The instrumentation for each test included a high speed
framing camera and flash radiography. The framing camera recorded the amount of case

AerMet® 100 steel cylinders were tested in three warhead geometries to deter-
mine performance in terms of case expansion, case rupture, fragment velocity
distribution, fragment spatial distribution, and fragment mass distribution.
Both as-received and heat-treated material were used to determine the dynamic
properties of the materials, as a function of heat treatment. Results were sum-
marized with data from other material property characterization techniques.  
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expansion prior to rupture. The flash radiography was used to determine the fragment ve-
locities and spatial distribution. Attapulgite clay and cellulose fiberboard were used as a
soft recovery system to collect fragments. The collected fragments were used to deter-
mine the fragment mass distribution.

Figure 1. Experimental set-up.

Three different hardware configurations were used in the test series. The first configu-
ration is a cylinder, nominally 20.3 cm in length with an inner diameter of 20.3 cm. As in
previous testing [1,2], a charge to mass (C/M) ratio of approximately one and center initi-
ation were chosen. A CH-6 booster was used to initiate the PBXN-110 main charge. This
is considered the baseline geometry, and is shown in Figure 2A.

Figure 2. Test hardware.
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The second configuration, Figure 2B, is a cylinder nominally 10.15 cm in length with
an inner diameter of 10.15 cm. The C/M ratio is approximately one. This cylinder is a
one-half geometrically scaled version of the baseline geometry and is used to study the ef-
fects of scaling. Due to limited availability of boosters of the required size, there was no
centertube. An N5 pellet was used to detonate the PBXN-110 main charge. The third geo-
metry is a thick walled cylinder, nominally 20.3 cm in length with an inner diameter of
10.15 cm, with a C/M of approximately 0.2. The thick walled case was used in order to
study material spall strength effects. This hardware is shown in Figure 2C. Table 1 sum-
marizes the hardware used in this test series. 

Table 1. Test hardware

RESULTS

Fragment Velocity

The velocity results are summarized in Table 2. The table provides a comparison of
the fragment velocity of the heat-treated and as-received materials for each of the three
geometries.

Table 2. Summary of fragment velocities

As shown above, the heat-treated AerMet® 100 cylinder had a higher fragment velo-
city than the as-received material. This is counterintuitive in that a hardened material
would be assumed to be more brittle, thus fragmenting sooner and allowing premature
venting of the detonation products. This premature venting would be expected to produce
lower fragment velocity. However, note that the as-received data had consistently greater
scatter in it than did the data from the heat-treated material experiments. Thus, the signifi-
cance of this finding may be doubtful. 
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Test
Unit

Inside
Diameter

(cm)

Outside
Diameter (cm)

Explosive
Mass
(kg)

Fragmenting
Case Mass

(kg)
Baseline HT 20.32 21.97 10.14 8.85
Baseline AR 20.32 21.98 8.36 8.85
Half-scale HT 10.18 10.99 1.14 1.10
Half-scale AR 10.18 10.98 1.14 1.10
Thick walled HT 10.17 14.29 2.50 12.70
Thick walled AR 10.17 14.29 2.49 12.70

Test Unit Velocity
HT

(m/s)

Velocity
AR

(m/s)

∆  Velocity
(m/s)

Standard Dev.
HT

(m/s)

Standard Dev.
AR

(m/s)

∆  Standard
Dev.
(m/s)

Baseline 1913 1825 88 52 75 23
Half-scale 1900 1857 43 67 89 22
Thick Wall 936 846 90 72 132 60



Case Expansion

In Figure 3, the case expansion of each test unit is shown. The baseline units, the half-
scale units, and the as-received thick walled units are shown at initial conditions, the on-
set of rupture, and at rupture. The thick walled heat-treated case took longer to rupture
than originally predicted, so we could not capture the complete venting of the unit. All of
the cases, with the exception of the baseline heat-treated case, contain small circumferen-
tial and longitudinal scribe marks around the top region of the cylinder. These marks were
designed to study the differences in circumferential and longitudinal strains of recovered
fragments. It is apparent in the high-speed framing camera photos that the scribe marks
affected the fragmentation of the cylinder. Fragments from the scored region were not
used for fragment mass distribution comparisons in the next section. In the baseline and
half-scale geometries the heat-treated cylinders vented sooner than the as-received cylin-
ders. However, because of the increased time to rupture in the heat-treated thick walled
case, we could not observe complete venting of the unit, thus the trend cannot be confir-
med for the thick walled case.

T=0 µS T=25 µS T=50 µS
A. Heat-treated baseline

T=0 µS T=25 µS T=50 µS
B. As-received baseline

T=0mS T=20mS T=40mS
C. Heat-treated half-scale
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T=0mS T=20mS T=40mS
D. As-received half-scale

T=0mS T=25mS T=66mS
E. Heat-treated thick wall

T=0mS T=25mS T=89mS
F. As-received thick wall

Figure 3. High-speed photos of case expansion.

Fragment Mass Distribution

Recovered fragments from each test were cleaned and weighed. Then, a cumulative
fragment mass distribution was determined for each test. It is assumed that the case break-
up follows an exponential frequency. Cumulative fragment mass distribution and the re-
sulting exponential fit applied to each is shown in Figure 4. 
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Figure 4. Cumulative fragment mass distributions heat-treated and as-received materials.

Table 3 provides the regression analysis summary. Note that the exponential distribu-
tion assumption results in excellent agreement for all cases, except the half-scale as-recei-
ved unit where the unexplained variance approaches 15%. Table 3 shows that, on average,
the heat-treated cylinders broke into smaller fragments than the as-received cylinders for
all three test configurations. 

Table 3. Regression analysis summary

*The mean is determined from an exponential fit of the cumulative fragment mass data.
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Fragments

Mean Fragment Mass
(grams)*

Explained Variance
(R2)

Baseline HT 159 3.32 0.9447
Baseline AR 315 7.84 0.9880

Half-scale HT 97 0.38 0.9528
Half-scale AR 138 1.11 0.8556
Thick Wall HT 200 10.85 0.9591
Thick Wall AR 202 12.51 0.9422



CONCLUSIONS

The data presented in this paper has highlighted several differences in the fragmenta-
tion properties of AerMet 100 due to differences in heat treatment. First, the average frag-
ment mass is significantly smaller for the material in its heat-treated condition than in its
as-received condition. Second, the framing camera results indicate that the dynamic duc-
tility of the material in its heat-treated condition is less than that of the material in its as-
received condition. The third conclusion we draw is that the ejection velocity of frag-
ments from the as-received cylinders is slightly higher than that of the heat-treated
cylinders. This last conclusion is somewhat contradictory based upon the case expansion
data which shows that the heat-treated cylinders vent sooner than the as-received cylin-
ders.
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