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USING A NUMERICAL FRAGMENTATION MODEL TO
UNDERSTAND THE FRACTURE AND FRAGMENTATION OF
NATURALLY FRAGMENTING MUNITIONS OF DIFFERING
MATERIALS AND GEOMETRIES
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Using an energy based fragmentation model implemented in the CTH shock
physics code, we estimate the fragmentation characteristics of naturaly frag-
menting cylinders of several different materials and geometries. We look at the
fracture of 4140 steel, a 70% tungsten alloy, tantalum, AerMet 100 steel and a
90% tungsten aloy, and examine the effects of scaling and material condition
on our ability to accurately model fragmentation. These estimates are then
compared to experimental data. This work illustrates the flexibility of the nu-
merical fragmentation model and addressesits capability asapredictivetool.

BACKGROUND

Understanding the fracture and fragmentation of explosively loaded devices has been
the focus of investigations for many years [1,2,3]. Much of the work has concentrated
upon understanding the underlying physical mechanisms that govern breakup [4]. The
efforts of Grady and Kipp have resulted in the implementation of a numerical fragmenta-
tion model in the CTH shock physics code[5,6]. In thismodel, the average fragment size,
S, isgiven by

JaaK, | % (1)

pcé

From Equation 1, we can see that the characteristic fragment size depends upon Kf, a
fragmentation constant; p, the material density; c, the sound speed; and €, strain rate [4].
Using this model, we have been able to successfully replicate two fragmentation experi-
ments [6], exploring the natural fragmentation of two materials, a 90% tungsten heavy al-
loy, and ahigh-strength steel alloy, AerMet100 in heat-treated condition. Using an experi-
mentally determined fragmentation toughness, Kf, and average fragment mass, we were
able to reproduce the fragment mass cumulative distributions resulting from the detona-
tion of explosively loaded cylinderslikethat shownin Figure 1 [6].
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Figure 1: A Cylinder Expanding dueto the Detonatiom of an Explosive Charge.

This paper examines the ability of the same model to estimate the fragmentation cha-
racteristics of naturally fragmenting munitions composed of severa very different materi-
als. We extend our previous work by addressing the fracture and breakup of explosively
loaded cylinders composed of 4140 steel, a 70% tungsten aloy, tantalum, and AerM et®
100 in “as received” condition. We will also study the effect of scaling on our ability to
accurately model fragmentation. In addition to providing fragmentation toughness con-
stants for these materials and their breakup characteristics, we also estimate the fragment
cumulative mass distributions. These estimates are then compared to experimental data.
The objectives of this effort are to further illustrate the robust nature of the numerical
fracture model asimplemented in CTH and assessits capability asapredictivetool.

Technical Approach

The four materials used in this study were selected because they vary significantly
from each other in terms of composition, ductility, and strength-characteristics that great-
ly affect material breakup.

We conducted 20 cm cylinder tests (detonating an explosive load inside cylinders no-
minally 20 cm by 20 cm, with a charge-to-metal mass (C/M) ratio of about one) to assess
the fragmentation qualities of these materials. From thesetests, we found an average frag-
ment mass for each material based upon an exponential fit to the data[7]. Using this data,
and a characteristic strain rate estimated using CTH calculations of the experiments, we
were able to cal culate fragmentation toughness from Equation (1). We then used the frag-
mentation toughness value as an input parameter for the numerical fragmentation model
and re-ran CTH with actual test geometry. Following the calculation, we smoothed the
CTH results using a post-processing technique that applied a Poisson distribution to the
discrete fragment bins generated by CTH which were then summed to give an overall
statistical distribution for the fragment mass. Finally, we compared this calculated distri-
bution to the fragment mass distribution from the cylinder tests. This same process was
used to evaluate the effects of scaling the test hardware, using a 10 cm by 10 cm, half-
scale cylinder and 210 cm by 20 cm, thick-walled cylinder.
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Test Description and Results

Each test was instrumented with a high-speed framing camera and flash radiography.
The framing camera was used to compare the amount of case expansion before rupture,
and the radiography allowed us to determine fragment velocities and the velocity distri-
bution. A soft recovery system of Vermiculite, attapulgite clay, and Celotex was used to
recover the fragments, providing a means to determine the fragment mass distribution of
each cylinder [8].

Figure 2 shows the test hardware configuration. The wall thickness for each test va
ried dueto the differencein material density.

ALUMINUM
BOOSTER STEEL END

PLATE

= TEST

. MATERIAL
ctuj : /
™ .
=
N

L : ~ 16 cm
I N STEEL
I 20.30 END PLATE

Figure 2: Test Hardware.

The results of the test series are covered in detail in Reference 7. The critical results
for use with the Grady-Kipp fragmentation model are the average fragment size based
upon an exponential fit of the data, given in Table 1, and the fragment mass distribution,
whichisdiscussed in moredetail later.
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Table 1: Average Fragment Mass
Material Fragment Mass Fragmentation
(grains) Toughness (m®°MPa)
4140 steel 69.4 68
70% Tungsten 133 35
Tantalum 41.2 49

Solving Equation (1) for Kf in terms of material properties, average fragment size, and
astrain rate determined from CTH output yields Equation (2). Calculated valuesfor frag-
mentation toughness, Kf, areincluded in Table 1.

2 2
Ke= PEEH o)
24

Calculation Setup and Results

We performed detailed axisymmetric CTH runs using a minimum of 5 cells acrossthe
cylinder walls. The cal culations were performed using areactive burn model for the High
explosive. Case materials were modeled using Mie Gruneisen equations of state and elas-
tic perfectly plastic constitutive models. In order to trigger the fragmentation calculation
in CTH, the fracture model uses the Johnson-Cook failure model as atwo-parameter pres-
sure dependent strain to failure model [6]. Figure 3 shows a sample setup.

]

s
Jo—
=

.

I
E

.
Figure 3: CTH Sample Set-up.

Figures 4, 5 and 6 show results from CTH and the corresponding experimental data
for each material. Figures4A, 5A, and 6A illustrate the cal cul ated case expansion.
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Figure 4: 4140 Steel Results.
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Figure 5: 70% Tungsten Results.

TyTe

A: Late-TimeMaterial
Expansion

Figure 6: Tantalum Results.
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Figures 4B, 5B, and 6B show the “raw” CTH cumulative distribution. Note in all
cases that the “raw” CTH results indicate that most of the case mass would break into a
very small number of fragment bin sizes. Thisresult is consistent with our previous study,
and is most likely due to the fact that the circumferential strain rate is almost constant in
this test configuration [6]. The Grady-Kipp cumulative fragment mass distribution, with
Poisson distribution post-processing, overlays the test data in Figures 4C, 5C and 6C.
Reference 6 describes the concept of applying Poisson statistics to the fragment size bins
calculated using CTH. The data from the 4140 steel cylinder test matches the CTH frag-
ment mass distribution extremely well for the fragments below 200 grains. The test data
and CTH results begin to diverge there, but the exponentia curve fit to the test data
remains close to the CTH results. The comparison for the 70% tungsten shows an excep-
tionally close match. Of the three materials tested, the tantalum test data and calculation
results show the weakest correlation. Note in this case, however, that the characteristic
fragment size obtained form CTH exceeds the wall thickness of the tantalum cylinder.
Thisresult, dueto the fact that the fragmentation model asimplemented in the code assumes
the fragment aspect ratio is one—i.e., acube —is clearly non-physical. Note also that the
thinwall thickness of the tantalum case will bias the fragment distribution observed in the
test.

Previous Test and Calculation Comparison

In conjunction with the tests detailed above, we conducted two 8-inch cylinder tests
using AerMet® 100, a high-strength steel, in two material conditions — heat-treated and
“asreceived.” The heat-treated results were shown previously [6], but are shown in Fi-
gure 7 along with the “asreceived” resultsfor completeness. The CTH results correspond
very closely to the test data for the heat-treated Aermet® 100, and slightly less well for
the“asreceived” material.

Figure 7: Comparison of Cumulative Fragment Mass Distribution from Test Dataand
CTH/Grady-Kipp Calculation for Aermet 100 in Two Material Conditions.
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Scaling Effects

Finally, we also tested Aermet® 100 cylinders of two different scales. The tests are
described in detail elsewhere in these proceedings. We looked at half-scale cylinders, 10
cm by 10 cm, with a C/M of about one. The second geometry we examined was a thick-
walled cylinder, 10 cm in diameter with a 20 cm length. The unit had awall thickness of
1.5cm,and aC/M of 0.2.

The CTH caculations of these expanding cylinder tests used the same material pro-
perties and material parameters that were used for the 20 cm AerMet® 100 calculations.
Figure 8 shows a comparison of calculation and test results. The half-scale CTH results
vary greatly from the test data with the CTH results producing fragments of larger size
than those observed in the tests. Thisisin agreement with observations made in a compa-
nion paper in these proceedings that show the fragmentation model will not accurately re-
produce replica-scaling resultsin its current form. On the other hand, the thick-walled re-
sults match very closely, both in the overlay of the data and the exponential fit to the test
data.

Figure 8: Comparison of Cumulative Fragment Mass Distribution Test Dataand
Calculation Results, for Scaled Aermet Cylinder Tests.
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Conclusions

The Grady-Kipp fragmentation model, coupled with Poisson statistics, shows great

ability to reproducetest resultsin terms of fragment mass distributions. It proved to be ex-
cellent in modeling the breakup of 4140 steel, 70% tungsten, and thick-walled Aermet®
100, and reasonable in matching the datafrom 8-inch Aermet® 100 tests.

Scaling appears to affect fragmentation in away that is not fully accounted for by the

fragmentation model, as the cumulative fragment mass distributions for the half-scale
Aermet® cylinders are poorly approximated by the model. Material heat-treat condition
seemsto have minimal effect on the correlation between the model and the test data.

Overadl, this numerical fracture model is fairly robust as implemented in CTH. For

this work, the model was exercised after the tests were conducted, but the model shows
potential for strong predictive capability.
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