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Recent improvementsin sensor and el ectronic technol ogies enable smart muni-
tions to detect and identify targets more than 200 meters away. Therefore, the
next generation of smart munitions will require EFP designs with extended
standoff capability. In the U.S., extensive work was focused on forming EFPs
with canted fins, to induce spin-up. This spin-up will improve the EFP's aero-
ballistic characteristics and on target accuracy. This paper will present compu-
ter simulations of the EFP's canted fin formation and aeroballistic simulation of
the EFP’s flight characteristics. The formation studies were conducted using
LS DYNA and the aeroballistic studies were conducted using TRASTA. In
addition, these computer simulations were verified with actual long-range tests
using tactical warheads. These canted fin EFP warheads were a so tested under
dynamic spinning conditions.

BACKGROUND

The ultimate goa of smart munitions such as SADARM and WAM, and any future sys-
tem employing an Explosively Formed Penetrator (EFP), isto defeat the most difficult target
a the longest standoff. In order to do this, an EFP must be aerodynamically stable so asto
strike thetarget with asmall miss distance and asmall angle of obliquity.

A commonway of improving performancefor any projectileisto avoid resonance and re-
duce dispersion by controlling theroll rate. Thisisaccomplished by canting the control sur-
faces at the rear, causing the body to spin up, much like a pinwheel in abreeze. By forming
canted finson an EFP, the sameimprovementsin aerodynamic stability can berealized.

Several techniques for forming EFPs with straight fins have been investigated and
presented in past International Ballistic Symposiumst.2.3. These techniquesinclude using
waveshapers embedded in the explosive, and copper shimsinserted between the liner and
explosives. While straights fins will improve an EFPs aerodynamic stability over con-
ventional EFPswith coned or flared tails, they do not increase the EFP sspinrate.

An indication of the benefits of increasing the EFP's spin rate can be seenin Figure 1,
which shows the effect of various initial spin rates on the miss distance of an idealized
EFP shape with a one-degree asymmetry in thetail. These results were obtained by feed-
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ing estimated aerodynamic coefficients into a six-degree of freedom simulation code. As
can be seen from the graph, the case of lowest deviation from aim point occurred at the
highest spin rate, with theworst case being that of no spin.
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Figure 1: Spin effects on miss Distance simulationsindicate that increasing an EFP's spin
rate dramatically reducesits miss distance.

Oninitially rotating submunitions, a dynamic instability caused by resonance has also
been observed in the past as can be seenin Figure 2. Resonance is a condition where the
penetrator spin rate equals its natural oscillation frequency. On this particular test, the
EFProll rate steadily decreased until it reached a natural frequency, causing the angle of
obliquity (also referred to as attitude) to increase rapidly. The EFP tumbled, eventually
striking the target sideways, achieving relatively little penetration.

Resonance can be avoided, however, by forcing the EFP to spin up using canted fins.
Figure 3 shows the results of asimilar test where an EFP, formed from the same liner de-
sign as in the previous figure, spun up purely by chance. In this case, the attitude remai-
ned bounded and the penetrator perforated its required target at full range. By intentio-
nally canting the fins, this penetrator would spin up reliably, resulting in much better and
more consistent performance.
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Figure 2: Resonance effects on aerostability. As an EFP spinsdown to its natural oscillation
frequency, it can enter a resonance condition causing an unstable growth in attitude. A
high impact angle at the target then causes greatly reduced penetration.
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Figure 3: Avoidance of resonance. Test results of the same liner design as Figure 2, show
that when the EFP spins up and avoids resonance, astableflight results.

APPROACH

The best way to determine if an EFP formed canted finsis to soft recover it. Accurate
measurement can then be made on fin length, fin height and cant angle. However, the
success rate of recovering an EFP drops dramatically as the warhead size is increased.
For this reason, this work was conducted in two separate phases; in the first phase, sub-
scale warheads were tested with an EFP recovery system used to study different techni-
ques of forming canted fins; in the second phase the most promising techniques were app-
lied to larger warheads and fired at extended standoff (up to 210 m) to gather
aerodynamic stability data.
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SUBSCALE TEST RESULTS

The test plan for the subscale program consisted of eighteen shots, which were divi-
ded into studying canted fin formation on two different EFP designs. It was anticipated
that the finning techniques would need to be tailored for a particular EFP shape. Thisis
the reason for testing two different EFP shapes, one with arelatively small length to flare
diameter (L/D) ratio and another more solid penetrator with a larger L/D (see Figure 4).

After theinitial test series, it was observed that the solid EFP was|ess sensitive to the dif-
Shartar, Siesper Fime Srmmlar Fra Diameter

ferent techniques applied, while the shorter EFP yielded better canted fin formation with
the techniques applied.
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Figure4: Subscaletest results.

A baseline design, based on the short EFP with canted fin angle measurements of 60
degrees, was selected for additional testing. When viewed from the side, the fin length
was 80% of the total body length (Figure 5). A long standoff test was conducted using the
baseline EFP design to gather aerodynamic data. The EFP formed similarly to that in Fi-
gure5 and flew very straight and stable al the way to the target. Figure 6 shows agraph of
EFP spin rate vs. range and the final yaw screen image prior to target impact. Indications
arethat the penetrator initially began to spin in the negative direction (right hand rule) due
to atorque caused by fin twisting during formation. However, air acting on the fins then
reversed the rotation and spun the EFP up to arate of 750 rad/s at the target (Figure 6).
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Figure 5: Baseline subscal e EFP design soft recovered.
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Figure 6: Test datafor baseline subscale EFPdesign.

FULL SIZE WARHEAD DESIGNS

In phase two, four Candidate EFPs were formulated utilizing the design data from the
subscale tests (Figure 7). An aerodynamic analysis was conducted on each shape with
TRASTA, a6 degree of freedom code at Alliant Techsystems. TRASTA uses a modified
Newtonian impact theory to predict the flight behavior of high-speed projectiles such as
EFPs. Surface elements and mass properties from the LS-DY NA simulations were con-
verted directly into TRASTA format. Initial conditions, such as angular and translational
vel ocity components, were applied and the free body motion of each shape was simulated
out to arange of 210 meters.

Preliminary predictions showed design 2.0 was the most statically stable but it produ-
ced thelowest spin torque. Design 3.0 wasthe least stable, but had the highest spin torque
(Figure 8). Design 2.0 produced a monolithic penetrator as shown by the flash x-ray and
Cordin photo (Figure 9). As predicted, it had the lowest spin torque of the three designs,
actually decreasing from 650 rad/sto 300 rad/s over the entire range. However, thirty yaw
screens confirmed that the penetrator was stable. The EFP struck the target at 210 meters
with an extremely low radial miss distance. Design 3.0 produced a penetrator that broke
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at the tail fin as shown by the flash X-ray and Cordin photo (Figure 10). Fortunately, the
tailpiece rotated enough to clearly show twisted/canted fin formation on the photograph
(Figure 10).

i1l
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Figure 7: Candidate full scale EFP designs generated with Dyna3D.
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Figure 8: TRASTA prediction of EFP stability & spin up rate.
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Figure 9: Design 2.0 test results (X-raysand Cordin).
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Figure 10: Design 3.0 test results (X-raysand Cordin).

Based on these test results, two additional designs (6A and 6B) were generated as
shown in Figure 11. Aero simulations predicted design 6A would be stable and would
have the greatest spin torque. Design 6B, which has the same finning technique as 6A but
adifferent liner design, would also be stable. However, its spin torque was predicted to be
lessthan the 6A design (Figure 12).

The first design, 6A formed a monoalithic penetrator that spun up from 1000 to 6000
rad/s, similar to predictions. It hit the target at 210 meters with alow radial miss distance.
The second design, 6B spun up from 700 to 2000 rad/s, again matching the predicted
trend. It hit the target at 210 meters with an even lower radial miss distance. Based onin-
itial testing, both designs show promise of meeting the requirements.
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Figure 12: Design 6A and 6B aerodynamic datacomparison (TRASTA-Test).

CONCLUSIONS

Computer simulations and test results conducted to date have shown that an EFP can
be formed with canted fins for increased spin, stability and accuracy at extended ranges.
By utilizing computer simulation codes, like Dyna3D for EFP formation and TRASTA
for aerodynamic analyses, it is possible to generate a Canted Fin EFP which meets exten-
ded standoff and accuracy requirementsin only afew designiterations.
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