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INTRODUCTION

When a shaped charge detonates a metal jet is created that elongates increasingly
owing to the velocity gradient in the jet. The penetration capability of the jet, in steel ar-
mour for example, thus increases to a corresponding degree until the jet has fragmented
completely. Fragmentation thus limits the maximum penetration of the jet. 

This report discloses the computer simulations of the detonation of a shaped charge
and the formation, elongation and fragmentation of the jet, which constitutes major pro-
gress – mainly thanks to developments in software – since the paper in Ref. [1]. Whether
the computed jet fragmentation is physically correct, or is caused by some numerical phe-
nomenon, is also discussed.

METHOD OF COMPUTATION

Rotation symmetrical simulations were performed using the computer program
AUTODYN-2D v.3.1.14 (single precision) and v.4.1.13c-DP (double precision) with a
compact, periphery-initiated shaped charge with a length to diameter ratio ≈1. The explo-
sive (LX14, JWL) and the copper liner were modelled in Euler, and the charge casing and
aft closure, etc made of aluminium alloy were modelled in Lagrange. As the shaped

An AUTODYN-2D Euler processor was used to perform a computer simula-
tion of a Shaped Charge detonation, including formation, elongation and frag-
mentation of the jet, all in the same simulation. Three degrees of fineness were
used for the Euler grid, as were single and double precision. Five copper
models were used for the liner material, of which one was hydrodynamic without
material strength, and the others with a yield strength. Jet fragmentation was
achieved in the latter case, which appears to be due to a combination of a nume-
ric, non-physical interference and the yield strength of the liner material. In
physical reality this may be the equivalent of a slight geometric imperfection in
the liner or the charge in general, plus a strength characteristic for the liner ma-
terial.

WM36



charge jet gradually became longer, the Euler grid was also extended. Five material mo-
dels using data from AUTODYN’s directory were used for copper, see Table 1. Three de-
grees of fineness were selected for the Euler grid as disclosed in Table 2 that also provides
an overview of the simulations performed. 

Table 1. Material models used for copper. EOS = equation of state.

Table 2. Overview of simulations performed. Data for the Euler grid at start, t = 0 µs.

RESULTS

The results from ten of the simulations at time t = 120 µs, which is the same for all
cases, is shown in Figs. 1 to 10 as per Table 2. For the sake of clarity the image of the shaped
charge jet has been magnified and divided into five equally long parts. The scale and the
minimum and maximum values of the X-axis are the same for all simulations. 

The two simulations with the hydrodynamic copper model, Figs. 1 and 5 (single and
double precision respectively), and the finely divided Euler grid gave a jet with varying
diameter but no fragmentation. The most peripheral parts of the computational model
with the outer part of the slug were eliminated at a later stage to reduce computation time.
This fact did not affect the jet in any other way. 

Figs. 2 to 4 show that the introduction of a strength model for the copper results in
fragmentation of the jet. The Steinberg-Guinan model, which cannot be shown here for
lack of space, showed a similar result. In all cases the tailmost part of the jet displays a
diffuse appearance. 

Figs. 5 and 6 in comparison with Figs. 1 and 2 respectively show that transition to
double precision did not entail any significant change in the appearance of the jet, e.g. the
diffuse fragments in the tail of the jet did not change appreciably.

Figs. 5 to 10 show that transition from a hydrodynamic copper model to a copper
model with material strength results in fragmentation even when the grid of the Euler model
is made coarser. However, the number of fragments is reduced and, further, the fragments
in the tail of the jet become less diffuse the coarser the grid becomes. 
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Material model EOS Strength model Failure model Erosion model

Hydrodynamic shock none (hydro) none none
Hull shock piecewise linear none none
Steinberg-Guinan shock Steinberg-Guinan none none
Johnson-Cook linear Johnson-Cook none none
Zerilli-Armstrong linear Zerilli-Armstrong none none

Simulation Program version Material model ∆Xtotal

(mm)
Itotal ∆Ycentral

(mm)
Jcentral Jtotal Fig. no.

JU03 v.3.1.14 Hydrodynamic 0.25 801 0.1 51 301 1
JS03 v.3.1.14 Hull 0.25 801 0.1 51 301 2
JT03 v.3.1.14 Johnson-Cook 0.25 801 0.1 51 301 3
JQ03 v.3.1.14 Zerilli-Armstrong 0.25 801 0.1 51 301 4
JR03 v.3.1.14 Steinberg-Guinan 0.25 801 0.1 51 301 ---
JD7 v.4.1.13c-DP Hydrodynamic 0.25 721 0.1 51 301 5
JD3 v.4.1.13c-DP Hull 0.25 721 0.1 51 301 6
JD8 v.4.1.13c-DP Hydrodynamic 0.5 361 0.2 26 201 7
JD5 v.4.1.13c-DP Hull 0.5 361 0.2 26 201 8
JD9 v.4.1.13c-DP Hydrodynamic 1.0 181 0.4 14 201 9
JD6 v.4.1.13c-DP Hull 1.0 181 0.4 14 201 10



DISCUSSION 

The results from the computer simulations of a shaped charge detonation and the for-
mation, elongation and fragmentation of the jet show that:
– the hydrodynamic copper model gives variations in diameter but no fragmentation
– copper models with material strength give fragmentation
– the finest Euler grid clearly gives fewer fragments than the real shaped charge
– a coarser Euler grid gives even fewer fragments
– a coarser Euler grid gives less diffuse fragments in the tail part of the jet.

CONCLUSIONS 

The fragmentation of the shaped charge jet obtained in the computer simulations dis-
closed herein may derive from a combination of two factors: 
1) A numerical perturbation caused by the copper liner at detonation moving obliquely

inwards through the rectangular Euler grid.
2) The copper liner has a certain material strength.

As (1) is a non-physical phenomenon the fragmentation displayed in the simulations
is also non-physical. However, it is conceivable that (1) in reality, for example, might cor-
respond to some slight geometrical discrepancy in the liner, or in the charge in general,
that has the same effect. Ref. [2] also shows that a very small local variation in diameter in
a shaped charge jet that elongates gives rise to necking of the jet. Necking can subse-
quently lead to fragmentation.
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Figure 1. Jet at t =  120 µs. Simulation JU03, finest Euler grid, hydrodynamic copper mo-
del. Complete jet shown uppermost, and then divided into five equally long parts and
magnified.

Figure 2. Jet at t = 120 µs. Simulation JS03, finest Euler grid, hull copper model. Com-
plete jet shown uppermost, and then divided into five equally long parts and magnified.
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Figure 3. Jet at t= 120 µs. Simulation JT03, finest Euler grid, Johnson-Cook copper mo-
del. Complete jet shown uppermost, and then divided into five equally long parts and
magnified.

Figure 4. Jet at t= 120 µs. Simulation JQ03, finest Euler grid, Zerilli-Armstrong copper
model. Complete jet shown uppermost, and then divided into five equally long parts and
magnified.
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Figure 5. Jet at t= 120 µs. Simulation JD7, finest Euler grid, hydrodynamic copper model.
Double precision. Complete jet shown uppermost, and then divided into five equally long
parts and magnified.

Figure 6. Jet at t= 120 µs. Simulation JD3, finest Euler grid, Hull copper model. Double
precision. Complete jet shown uppermost, and then divided into five equally long parts
and magnified.
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Figure 7. Jet at t= 120 µs. Simulation JD8, medium Euler grid, hydrodynamic copper mo-
del. Double precision. Complete jet shown uppermost, and then divided into five equally
long parts and magnified.

Figure 8. Jet at t= 120 ms. Simulation JD5, medium Euler grid, Hull copper model. Dou-
ble precision. Complete jet shown uppermost, and then divided into five equally long
parts and magnified.
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Figure 9. Jet at t= 120 µs. Simulation JD9, coarse Euler grid, hydrodynamic copper
model. Double precision.  Complete jet shown uppermost, and then divided into five
equally long parts and magnified.

Figure 10. Jet at t= 120 µs. Simulation JD6, coarse Euler grid, Hull copper model. Double
precision.  Complete jet shown uppermost, and then divided into five equally long parts
and magnified.
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